HolmE:低维双曲KG嵌入以实现更好的外推HolmE: Low-Dimensional Hyperbolic KG Embedding for Better Extrapolation |
|
课程网址: | https://videolectures.net/eswc2024_zheng_better_extrapolation/ |
主讲教师: | Zhuoxun Zheng |
开课单位: | 2024年上海世博会 |
开课时间: | 2024-06-18 |
课程语种: | 英语 |
中文简介: | 过去的研究表明,知识图嵌入(KGE)方法以三元组的形式从事实中学习,并推断出看不见的三元组。双曲空间中的KGE即使在低维嵌入空间中也能取得令人印象深刻的性能。然而,现有的工作有限地研究了对代表性不足的数据的外推,包括代表性不足实体和关系。为此,我们提出了HolmE,这是双曲流形上KGE方法的一般形式。HolmE通过对偏差项的特殊处理来推断代表性不足的实体,并通过支持强组合来推断代表权不足的关系。我们提供了实证证据,表明HolmE在建模看不见的三元组、代表性不足的实体和代表性不足关系方面取得了有前景的表现。我们证明主流KGE方法要么:(1)是HolmE的特例,因此支持强组合;(2) 不支持强烈的构图。 |
课程简介: | Past works have shown knowledge graph embedding (KGE) methods learn from facts in the form of triples and extrapolate to unseen triples. KGE in hyperbolic space can achieve impressive performance even in low-dimensional embedding space. However, existing work limitedly studied extrapolation to under-represented data, including under-represented entities and relations. To this end, we propose HolmE, a general form of KGE method on hyperbolic manifolds. HolmE addresses extrapolation to under-represented entities through a special treatment of the bias term, and extrapolation to under-represented relations by supporting strong composition. We provide empirical evidence that HolmE achieves promising performance in modelling unseen triples, underrepresented entities, and under-represented relations. We prove that mainstream KGE methods either: (1) are special cases of HolmE and thus support strong composition; (2) do not support strong composition. |
关 键 词: | HolmE; 低维双曲; KG嵌入 |
课程来源: | 视频讲座网 |
数据采集: | 2024-08-10:liyq |
最后编审: | 2024-09-29:liyy |
阅读次数: | 14 |