0


相似的实体有相似的嵌入吗?

Do Similar Entities have Similar Embeddings?
课程网址: https://videolectures.net/eswc2024_hubert_similar_entities/  
主讲教师: Nicolas Hubert
开课单位: 2024年上海世博会
开课时间: 2024-06-18
课程语种: 英语
中文简介:
为链接预测开发的知识图嵌入模型(KGEM)学习知识图中实体的向量表示,称为嵌入。一个常见的隐含假设是KGE实体相似性假设,该假设指出这些KGEM在其嵌入空间内保留了图的结构,即将图中相似的实体彼此靠近。这种理想的特性使KGEM广泛应用于下游任务,如推荐系统或药物再利用。然而,实体相似性和嵌入空间中相似性的关系很少被正式评估。通常,KGEM根据其唯一链路预测能力进行评估,使用基于排名的指标,如Hits[url]K或平均排名。本文对图中实体相似性在嵌入空间中固有地反映的普遍假设提出了质疑。因此,我们进行了广泛的实验来衡量KGEM将相似实体聚集在一起的能力,并研究潜在因素的性质。此外,我们研究了不同的KGEM是否揭示了不同的相似性概念。
课程简介: Knowledge graph embedding models (KGEMs) developed for link prediction learn vector representations for entities in a knowledge graph, known as embeddings. A common tacit assumption is the KGE entity similarity assumption, which states that these KGEMs retain the graph’s structure within their embedding space, i.e., position similar entities within the graph close to one another. This desirable property make KGEMs widely used in downstream tasks such as recommender systems or drug repurposing. Yet, the relation of entity similarity and similarity in the embedding space has rarely been formally evaluated. Typically, KGEMs are assessed based on their sole link prediction capabilities, using ranked-based metrics such as Hits@K or Mean Rank. This paper challenges the prevailing assumption that entity similarity in the graph is inherently mirrored in the embedding space. Therefore, we conduct extensive experiments to measure the capability of KGEMs to cluster similar entities together, and investigate the nature of the underlying factors. Moreover, we study if different KGEMs expose a different notion of similarity.
关 键 词: 相似实体; 相似嵌入; KGEM
课程来源: 视频讲座网
数据采集: 2024-08-10:liyq
最后编审: 2024-09-29:liyy
阅读次数: 17