一种新的多模态知识图和LLM方法,用于增强决策支持Optimizing Aerospace Product Maintenance: A Novel Multi-Modal Knowledge Graph and LLM Approach for Enhanced Decision Support |
|
课程网址: | https://videolectures.net/eswc2024_awill_optimizing_aerospace/ |
主讲教师: | Raed Awill |
开课单位: | 2024年上海世博会 |
开课时间: | 2024-06-18 |
课程语种: | 英语 |
中文简介: | 孤立且难以获取的维修知识阻碍了航空航天工业中关键涡轮发动机部件的有效维护。本研究引入了一种新的多模态知识图,利用自然语言处理(NLP)和大型语言模型(LLM)从非结构化文档中提取修复规则并将其结构化为131个节点、148个关系图。这一进步使人们能够立即访问基本信息,并促进数据驱动的决策,提高了维修的准确性和效率。在AddQual有限公司实施的知识图谱将信息检索时间减少了70%,修复速度提高了20%,预计每年可节省20%的成本。这些结果突显了将人工智能与知识图谱整合到航空航天维护中的变革潜力。未来的工作将侧重于推进稳健的数据验证框架和开发自适应人工智能算法,将收益扩展到整个航空航天领域及其他领域。 |
课程简介: | Siloed and inaccessible repair knowledge hinders the efficient maintenance of critical Turbine Engine components in the aerospace industry. This research introduces a novel multi-modal knowledge graph, leveraging Natural Language Processing (NLP) and Large Language Models (LLMs) to extract and structure repair rules from unstructured documents into a 131-node, 148-relationship graph. This advancement enables immediate access to essential information and facilitates datadriven decision-making, enhancing repair accuracy and efficiency. Implemented at AddQual Ltd., the knowledge graph reduced information retrieval times by 70%, increased repair speed by 20%, and is projected to yield 20% annual cost savings. These results highlight the transformative potential of integrating AI with knowledge graphs in aerospace maintenance. Future work will focus on advancing robust data validation frameworks and developing adaptive AI algorithms, extending the benefits across the aerospace sector and beyond. |
关 键 词: | 航天产品; 多模态知识图; LLM方法 |
课程来源: | 视频讲座网 |
数据采集: | 2024-08-13:liyq |
最后编审: | 2024-08-13:liyq |
阅读次数: | 9 |