0


整合领域知识,增强植物病害分类中概念模型的可解释性

Integrating domain knowledge for enhanced concept model explainability in Plant Disease classification
课程网址: https://videolectures.net/eswc2024_amara_plant_disease/  
主讲教师: Jihen Amara
开课单位: 2024年上海世博会
开课时间: 2024-06-18
课程语种: 英语
中文简介:
基于深度学习的植物病害检测已经取得了有前景的进展,特别是在通过数字图像识别病害的显著能力方面。然而,这些系统的不透明性和缺乏透明度,往往无法为其预测提供人类可解释的解释,这引发了人们对其稳健性和可靠性的担忧。虽然许多方法都尝试了后自组织模型的可解释性,但很少有方法专门针对领域知识的整合和影响。在这项研究中,我们提出了一种新的框架,将番茄病害本体论与概念可解释性方法概念激活向量测试(TCAV)相结合。与要求用户手动收集各种图像概念的原始TCAV方法不同,我们的方法根据领域专家在植物病害识别中使用的相关概念自动创建图像。这不仅简化了概念收集和标签过程,还减轻了领域知识有限的用户的负担,最终减轻了概念选择中的潜在偏差。除了自动生成TCAV方法的概念图像外,我们的框架还深入了解了通过本体识别的疾病相关概念在深度学习模型决策过程中的意义。因此,我们的方法提高了模型诊断能力的效率和可解释性,有望成为一种更值得信赖和可靠的疾病检测模型。
课程简介: Deep learning-based plant disease detection has seen promising advancements, particularly in its remarkable ability to identify diseases through digital images. Nevertheless, these systems’ opacity and lack of transparency, which often offer no human-interpretable explanations for their predictions, raise concerns with respect to their robustness and reliability. While many methods have attempted post-hoc model explainability, few have specifically targeted the integration and impact of domain knowledge. In this study, we propose a novel framework that combines a tomato disease ontology with the concept explainability method Testing with Concept Activation Vectors (TCAV). Unlike the original TCAV method, which required users to gather diverse image concepts manually, our approach automates the creation of images based on relevant concepts used by domain experts in plant disease identification. This not only simplifies the concept collection and labelling process but also reduces the burden on users with limited domain knowledge, ultimately mitigating potential biases in concept selection. Besides automating the concept image generation for the TCAV method, our framework gives insights into the significance of disease-related concepts identified through the ontology in the deep learning model decision-making process. Consequently, our approach enhances the efficiency and interpretability of the model’s diagnostic capabilities, promising a more trustworthy and reliable disease detection model.
关 键 词: 领域知识; 植物病害分类; 概念模型
课程来源: 视频讲座网
数据采集: 2024-08-13:liyq
最后编审: 2024-08-13:liyq
阅读次数: 11