细粒度的分类和部分反馈的排名On Multilabel Classification and Ranking with Partial Feedback |
|
课程网址: | http://videolectures.net/machine_orabona_ranking/ |
主讲教师: | Francesco Orabona |
开课单位: | 芝加哥丰田技术学院 |
开课时间: | 2013-01-14 |
课程语种: | 英语 |
中文简介: | 我们提出了一种在部分信息设置中工作的新型多标签/排序算法。该算法基于二阶下降法,依赖于上置信度边界来进行权衡探索和开发。我们在部分对抗设置中分析该算法,其中协变量可以是对抗性的,但是多标记概率由(广义)线性模型控制。我们显示了O(T1 / 2logT)后悔边界,它在现有结果上以多种方式改进。我们通过与真实世界多标记数据集上的完整信息基线进行对比来测试我们的上置信度方案的有效性,通常获得相当的性能。 |
课程简介: | We present a novel multilabel/ranking algorithm working in partial information settings. The algorithm is based on 2nd-order descent methods, and relies on upper-confidence bounds to trade-off exploration and exploitation. We analyze this algorithm in a partial adversarial setting, where covariates can be adversarial, but multilabel probabilities are ruled by (generalized) linear models. We show O(T1/2logT) regret bounds, which improve in several ways on the existing results. We test the effectiveness of our upper-confidence scheme by contrasting against full-information baselines on real-world multilabel datasets, often obtaining comparable performance. |
关 键 词: | 局部信息设置工作; 细粒度的概率; 线性模型 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-29:zyk |
阅读次数: | 44 |