在错误的MDL贝叶斯分类的次优性Suboptimality of MDL and Bayes in Classification under Misspecification |
|
课程网址: | http://videolectures.net/mcslw04_grunwald_smbcu/ |
主讲教师: | Peter Grünwald |
开课单位: | 数学与计算机科学中心 |
开课时间: | 2007-02-25 |
课程语种: | 英语 |
中文简介: | 我们表明,经常应用于分类问题的贝叶斯和MDL学习形式可能*统计上不一致*。我们提出了一大类分类器和分布,使得模型中的最佳分类器具有几乎为0的泛化误差(预期0/1预测损失)。然而,无论观察到多少数据,MDL推断的分类器和基于贝叶斯后验的分类器将表现得比这个最佳分类器差得多,因为它们预期的0/1预测损失实质上更大。我们的结果可以被重新解释为表明在错误指定下,贝叶斯和MDL并不总是收敛到模型中的分布,该分布在KL分歧中最接近数据生成分布。我们将这个结果与Diaconis,Freedman和Barron的贝叶斯不一致性的早期结果进行了比较。 |
课程简介: | We show that forms of Bayesian and MDL learning that are often applied to classification problems can be *statistically inconsistent*. We present a large family of classifiers and a distribution such that the best classifier within the model has generalization error (expected 0/1-prediction loss) almost 0. Nevertheless, no matter how many data are observed, both the classifier inferred by MDL and the classifier based on the Bayesian posterior will behave much worse than this best classifier in the sense that their expected 0/1-prediction loss is substantially larger. Our result can be re-interpreted as showing that under misspecification, Bayes and MDL do not always converge to the distribution in the model that is closest in KL divergence to the data generating distribution. We compare this result with earlier results on Bayesian inconsistency by Diaconis, Freedman and Barron. |
关 键 词: | 贝叶斯; MDL学习; 模型泛化误差; 数据生成分布 |
课程来源: | 视频讲座网 |
最后编审: | 2020-07-29:yumf |
阅读次数: | 58 |