在线广告需求侧平台的利润最大化Profit Maximization for Online Advertising Demand-Side Platform |
|
课程网址: | https://videolectures.net/videos/kdd2017_grigas_side_platform |
主讲教师: | Paul Grigas |
开课单位: | KDD 2017研讨会 |
开课时间: | 2017-12-01 |
课程语种: | 英语 |
中文简介: | 我们开发了一个优化模型和相应的算法来管理需求侧平台(DSP),然而,DSP的目标是在为广告商客户获得有价值的印象的同时,最大限度地提高自身利润。我们在每次点击成本/每次行动成本定价模型中,为在实时竞价环境中与广告交易所交互的DSP制定了利润最大化问题。由于印象分配和出价决策的联合优化,我们提出的公式导致了一个非凸优化问题。我们使用拉格朗日松弛来开发一个可处理的凸对偶问题,由于二次价格拍卖的性质,该问题可以用路基方法有效地解决。我们提出了一个两阶段求解过程,但在第一阶段,我们使用路基算法求解凸对偶问题,在第二阶段,我们用之前计算的对偶解来设定投标价格,然后求解线性优化问题以获得分配概率变量。在几个综合示例中,我们证明了我们提出的解决方案方法比实践中使用的基线方法具有更优的性能。 |
课程简介: | We develop an optimization model and corresponding algorithm for the management of a demand-side platform (DSP), whereby the DSP aims to maximize its own profit while acquiring valuable impressions for its advertiser clients. We formulate the problem of profit maximization for a DSP interacting with ad exchanges in a real-time bidding environment in a cost-per-click/cost-per-action pricing model. Our proposed formulation leads to a nonconvex optimization problem due to the joint optimization over both impression allocation and bid price decisions. We use Lagrangian relaxation to develop a tractable convex dual problem, which, due to the properties of second-price auctions, may be solved efficiently with subgradient methods. We propose a two-phase solution procedure, whereby in the first phase we solve the convex dual problem using a subgradient algorithm, and in the second phase we use the previously computed dual solution to set bid prices and then solve a linear optimization problem to obtain the allocation probability variables. On several synthetic examples, we demonstrate that our proposed solution approach leads to superior performance over a baseline method that is used in practice. |
关 键 词: | 在线广告; 需求侧平台; 利润最大化 |
课程来源: | 视频讲座网 |
数据采集: | 2024-11-24:liyq |
最后编审: | 2024-11-24:liyq |
阅读次数: | 12 |