0


一种原始对偶算法及其在网络流量整形中的应用

Online Ranking with Constraints: A Primal­-Dual Algorithm and Applications to Web Traffic­Shaping
课程网址: https://videolectures.net/videos/kdd2017_shah_online_ranking  
主讲教师: Bryan Perozzi
开课单位: KDD 2017研讨会
开课时间: 2017-10-09
课程语种: 英语
中文简介:
我们研究了由网络流量整形应用程序驱动的在线约束排名问题:一个在线会话流到达,在每个会话中,我们被要求对项目进行排名。挑战在于优化每个会话中的排名,以控制局部与全局目标:在每个会话中,人们希望在满足整个会话集(全局)的某些约束的同时,最大限度地提高奖励(局部)。这种设置的一个典型应用是门户网站中的页面优化。我们希望对项目进行排名,这样不仅可以在每个会话中最大限度地提高用户参与度,还可以满足其他业务限制(例如交付给各种发布合作伙伴的浏览量/点击量)。我们描述了一种用于执行此优化的在线算法。我们方法的一个新颖元素是使用线性规划对偶性和与著名匈牙利算法的连接。该框架使我们能够为每个流量整形约束确定一组\emph{影子价格},然后可以直接在最终排名函数中使用,以分配接近最优的排名。(双)线性程序可以定期离线求解以确定价格。在服务时间,这些价格被用作权重来计算项目的加权排名分数,这种方法的简单性便于扩展到web应用程序。我们为我们的在线算法的性能提供了严格的理论保证,并使用来自著名互联网门户的真实网络流量数据的数值实验验证了我们的方法。
课程简介: We study the online constrained ranking problem motivated by an application to web-traffic shaping: an online stream of sessions arrive in which, within each session, we are asked to rank items. The challenge involves optimizing the ranking in each session so that local vs. global objectives are controlled: within each session one wishes to maximize a reward (local) while satisfying certain constraints over the entire set of sessions (global). A typical application of this setup is that of page optimization in a web portal. We wish to rank items so that not only is user engagement maximized in each session, but also other business constraints (such as the number of views/clicks delivered to various publishing partners) are satisfied. We describe an online algorithm for performing this optimization. A novel element of our approach is the use of linear programming duality and connections to the celebrated Hungarian algorithm. This framework enables us to determine a set of \emph{shadow prices} for each traffic-shaping constraint that can then be used directly in the final ranking function to assign near-optimal rankings. The (dual) linear program can be solved off-line periodically to determine the prices. At serving time these prices are used as weights to compute weighted rank-scores for the items, and the simplicity of the approach facilitates scalability to web applications. We provide rigorous theoretical guarantees for the performance of our online algorithm and validate our approach using numerical experiments on real web-traffic data from a prominent internet portal.
关 键 词: 原始对偶算法; 网络流量整形; 在线约束排名
课程来源: 视频讲座网
数据采集: 2024-12-25:liyq
最后编审: 2024-12-25:liyq
阅读次数: 10