0


异构信息网络中基于元图的推荐融合

Meta-Graph Based Recommendation Fusion over Heterogeneous Information Networks
课程网址: https://videolectures.net/videos/kdd2017_zhao_recommendation_fusi...  
主讲教师: Huan Zhao
开课单位: KDD 2017研讨会
开课时间: 2017-10-09
课程语种: 英语
中文简介:
异构信息网络(HIN)是现代大型商业推荐系统中涉及异构数据类型的数据的自然和通用表示。基于HIN的推荐器面临两个问题:如何表示推荐的高级语义,以及如何融合异构信息进行推荐。本文首先将元图的概念引入到基于HIN-Based的推荐中,然后用“矩阵分解(MF)+分解机(FM)”的方法解决信息融合问题,从而解决了这两个问题。对于每个元图生成的相似性,我们执行标准MF为用户和项目生成潜在特征。对于基于不同元图的特征,我们建议使用FM和Group lasso(FMG)从观察到的评级中自动学习,以有效地选择有用的基于元图的功能。在亚马逊和Yelp这两个真实世界的数据集上的实验结果表明,与最先进的FM和其他基于HIN的推荐算法相比,我们的方法是有效的。
课程简介: Heterogeneous Information Network (HIN) is a natural and general representation of data in modern large commercial recommender systems which involve heterogeneous types of data. HIN based recommenders face two problems: how to represent the high-level semantics of recommendations and how to fuse the heterogeneous information to make recommendations. In this paper, we solve the two problems by €rst introducing the concept of meta-graph to HINbased recommendation, and then solving the information fusion problem with a “matrix factorization (MF) + factorization machine (FM)” approach. For the similarities generated by each meta-graph, we perform standard MF to generate latent features for both users and items. With di‚erent meta-graph based features, we propose to use FM with Group lasso (FMG) to automatically learn from the observed ratings to e‚ectively select useful meta-graph based features. Experimental results on two real-world datasets, Amazon and Yelp, show the e‚ectiveness of our approach compared to stateof-the-art FM and other HIN-based recommendation algorithms.
关 键 词: 异构信息网络; 元图推荐融合; 推荐器
课程来源: 视频讲座网
数据采集: 2024-12-25:liyq
最后编审: 2024-12-25:liyq
阅读次数: 20