处理不平衡回归任务的重采样方法Resampling Approaches for Handling Imbalanced Regression Tasks |
|
课程网址: | https://videolectures.net/videos/solomon_torgo_regression_tasks |
主讲教师: | Luis Torgo |
开课单位: | 所罗门研讨会 |
开课时间: | 2017-01-23 |
课程语种: | 英语 |
中文简介: | 长期以来,研究界一直在研究不平衡分类任务。标准方法中发现了许多问题,并提出了解决这些相关任务的新建议。令人惊讶的是,对于具有数字目标变量的预测任务,即回归,并没有给予同样的关注。然而,当最终用户的目标是目标变量的罕见值子集的性能时,这些域也会出现类似的问题。由于分类标准评估指标失败,因此需要新的方法来使学习算法偏向最终用户目标。在本次演讲中,我们将介绍这些问题的重采样方法。这些方法的主要优点是可以与任何现有的回归工具一起使用,并且仍然专注于最终用户的目标,即训练数据中表现不佳的值。 |
课程简介: | Imbalanced classification tasks have been studied by the research community for a long time. Numerous problems have been identified with standard approaches and new proposals have been put forward for addressing these relevant tasks. Surprisingly, the same attention has not been given to predictive tasks with a numeric target variable, i.e. regression. However, similar problems occur on these domains, when the target of the end-user is the performance on a subset of rare values of the target variable. As in classification standard evaluation metrics fail, and new approaches are required to bias the learning algorithms to the end-user goals. In this talk we will present resampling approaches to these problems. These methods have as main advantage the possibility of being used together with any existing regression tool and still focus on the goals of the end-user, i.e. values poorly represented in the training data. |
关 键 词: | 不平衡回归任务; 重采样法; 分类标准评估 |
课程来源: | 视频讲座网 |
数据采集: | 2024-12-27:liyq |
最后编审: | 2024-12-27:liyq |
阅读次数: | 12 |