原子内部:挖掘网络网络及其他Inside the Atoms: Mining a Network of Networks and Beyond |
|
课程网址: | https://videolectures.net/videos/kdd2016_tong_mining_network |
主讲教师: | Hanghang Tong |
开课单位: | KDD 2016研讨会 |
开课时间: | 2016-10-12 |
课程语种: | 英语 |
中文简介: | 网络(即图形)出现在许多高影响力的应用中。通常,这些网络是在不同时间、不同粒度从不同来源收集的。在本次演讲中,我将介绍我们最近在挖掘这种多网络方面的工作。首先,我们将介绍两个模型——一个是对一组互联网络(NoN)进行建模;另一个是对一组相互连接的协同演化时间序列(NoT)进行建模。对于这两种模型,我们将证明,通过将网络视为上下文,我们能够对更复杂的现实世界应用程序进行建模。其次,我们将展示一些算法示例,说明如何使用这些新模型进行挖掘,包括排名、插补和预测。最后,我们将展示我们的新模型和算法在一些应用中的有效性,包括生物信息学和传感器网络。 |
课程简介: | Networks (i.e., graphs) appears in many high-impact applications. Often these networks are collected from different sources, at different times, at different granularities. In this talk, I will present our recent work on mining such multiple networks. First, we will present two models - one on modeling a set of inter-connected networks (NoN); and the other on modeling a set of inter-connected co-evolving time series (NoT). For both models, we will show that by treating networks as context, we are able to model more complicate real-world applications. Second, we will present some algorithmic examples on how to do mining with such new models, including ranking, imputation and prediction. Finally, we will demonstrate the effectiveness of our new models and algorithms in some applications, including bioinformatics, and sensor networks. |
关 键 词: | 原子内部; 挖掘网络; 传感器网络 |
课程来源: | 视频讲座网 |
数据采集: | 2024-12-30:liyq |
最后编审: | 2024-12-30:liyq |
阅读次数: | 7 |