0


因果发现的基础

Foundations of Causal Discovery
课程网址: https://videolectures.net/videos/kdd2016_eberhardt_causal_discove...  
主讲教师: Frederick Eberhardt
开课单位: KDD 2016研讨会
开课时间: 2016-10-12
课程语种: 英语
中文简介:
现在广泛使用的因果图模型理论考虑了一组统计变量之间的因果关系。因果关系用变量集之间的有向图表示,因果发现的任务是根据图中变量生成的概率分布来识别这种因果结构。我将介绍和概述一些因果发现方法,并介绍已知的可识别性结果,特别关注它们所依赖的假设。
课程简介: The now widely used theory of causal graphical models considers causal relations among a set of statistical variables. The causal relations are represented in terms of a directed graph among the set of variables, and the task of causal discovery is to identify this causal structure on the basis of the probability distribution generated by the variables in the graph. I will provide an introduction and overview of some of the methods for causal discovery and present known identifiability results with a particular focus on the assumptions they depend on.
关 键 词: 发现因果; 因果图模型; 因果关系
课程来源: 视频讲座网
数据采集: 2025-01-04:liyq
最后编审: 2025-01-04:liyq
阅读次数: 54