0


通过比较干预分布来评估因果模型

Evaluating Causal Models by Comparing Interventional Distributions
课程网址: https://videolectures.net/videos/kdd2016_garant_interventional_di...  
主讲教师: Dan Garant
开课单位: KDD 2016研讨会
开课时间: 2016-10-12
课程语种: 英语
中文简介:
评估因果模型质量的主要方法是测量学习模型结构的图形精度。我们提出了一种评估因果模型的替代方法,该方法直接衡量估计的干预分布的准确性。我们将这种分布度量与结构度量(如结构汉明距离和结构干预距离)进行了对比,表明结构度量往往与估计的干预分布的准确性不符。我们使用许多真实和合成的数据集来说明各种情况,在这些情况下,结构度量在算法选择和参数调整方面提供了误导性的结果,我们建议将分布度量作为评估因果模型的新标准。
课程简介: The predominant method for evaluating the quality of causal models is to measure the graphical accuracy of the learned model structure. We present an alternative method for evaluating causal models that directly measures the accuracy of estimated interventional distributions. We contrast such distributional measures with structural measures, such as structural Hamming distance and structural intervention distance, showing that structural measures often correspond poorly to the accuracy of estimated interventional distributions. We use a number of real and synthetic datasets to illustrate various scenarios in which structural measures provide misleading results with respect to algorithm selection and parameter tuning, and we recommend that distributional measures become the new standard for evaluating causal models.
关 键 词: 干预分布; 因果模型; 图形精度
课程来源: 视频讲座网
数据采集: 2025-01-04:liyq
最后编审: 2025-01-04:liyq
阅读次数: 9