正确建模网络Correctly Modeling Networks |
|
课程网址: | https://videolectures.net/videos/kdd2016_kolda_modeling_networks |
主讲教师: | Tamara Kolda |
开课单位: | KDD 2016研讨会 |
开课时间: | 2016-10-12 |
课程语种: | 英语 |
中文简介: | 理解和建模是齐头并进的——我们开发模型不仅是为了进行预测,也是为了看看模型在哪里失败,还有更多的事情要做。大规模网络的数学建模极具挑战性。在本次演讲中,我们将阐述哪些特征对于测量和再现很重要。在无向的情况下,我们证明了具有高聚类系数(即许多三角形)的图必须具有密集的Erdȍs-Rényi子图。这是一个关键的理论发现,可能为理解网络结构提供线索。遵循这一思路,我们提出了块二级Erdȍs-Rényi(BTER)模型,因为它再现了给定的度分布和聚类系数分布(即三角形分布),边的数量呈线性缩放,并且易于并行化。我们还考虑将这项工作扩展到二分图,其中我们考虑二分四个循环,并提出了一个二分BTER(biBTER)模型。这些模型可用于生成捕捉真实图形显著特征的人工图形。我们比较了人工和现实世界的图表,以便了解模型在哪里是准确的。如果时间允许,我们还解释了如何用很少的参数指定这些模型,这对基准测试很有用。我们以未来调查的未决问题结束。这是与S.Aksoy、A.Pinar、T.Plantenga和C.Seshadhri的联合研究。 |
课程简介: | Understanding and modeling go hand in hand – we develop models not only to make predictions but also to see where the models fail and there is more to do. Large-scale networks are immensely challenging to model mathematically. In this talk, we present our arguments for what features are important to measure and reproduce. In the undirected case, we show that graphs with high clustering coefficients (i.e., many triangles) must have dense Erdȍs-Rényi subgraphs. This is a key theoretical finding that may yield clues in understanding network structure. Following this line, we propose the Block Two-level Erdȍs-Rényi (BTER) model because it reproduces a given degree distribution and clustering coefficient profile (i.e., the triangle distribution), scales linearly in the number of edges, and is easily parallelized. We also consider the extension of this work to bipartite graphs, where we consider bipartite four-cycles, and propose a bipartite BTER (biBTER) model. These models can be used to generate artificial graphs that capture salient features of real graphs. We compare the artificial and real-world graphs so that we can understand where the models are accurate or not. Time permitting, we also explain how these models can be specified with very few parameters, which is useful for benchmarking purposes. We close with open questions for future investigations. This is joint work with S. Aksoy, A. Pinar, T. Plantenga, and C. Seshadhri. |
关 键 词: | 建模网络; 开发模型; 网络结构 |
课程来源: | 视频讲座网 |
数据采集: | 2025-01-07:liyq |
最后编审: | 2025-01-07:liyq |
阅读次数: | 11 |