0


异构信息网络挖掘中的节点表示

Node Representation in Mining Heterogeneous Information Networks
课程网址: https://videolectures.net/videos/kdd2016_sun_information_networks  
主讲教师: Yizhou Sun
开课单位: KDD 2016研讨会
开课时间: 2016-10-12
课程语种: 英语
中文简介:
挖掘信息网络的挑战之一是缺乏将节点表示为低维空间的内在度量,这在许多挖掘任务中至关重要,如推荐和异常检测。此外,当涉及到异构信息网络时,节点属于不同类型,链接代表不同的语义含义,正确表示节点更具挑战性。在本次演讲中,我们将重点介绍两个挖掘任务,即(1)基于内容的推荐和(2)异构分类事件中的异常检测,并介绍(1)当涉及不同类型的节点和链接时如何表示节点;以及(2)异构链接在这些任务中如何发挥不同的作用。我们的研究结果证明了这些新方法的优越性和可解释性。
课程简介: One of the challenges in mining information networks is the lack of intrinsic metric in representing nodes into a low dimensional space, which is essential in many mining tasks, such as recommendation and anomaly detection. Moreover, when coming to heterogeneous information networks, where nodes belong to different types and links represent different semantic meanings, it is even more challenging to represent nodes properly. In this talk, we will focus on two mining tasks, i.e., (1) content-based recommendation and (2) anomaly detection in heterogeneous categorical events, and introduce (1) how to represent nodes when different types of nodes and links are involved; and (2) how heterogeneous links play different roles in these tasks. Our results have demonstrated the superiority as well as the interpretability of these new methodologies.
关 键 词: 信息网络; 节点表示; 异常检测
课程来源: 视频讲座网
数据采集: 2025-01-07:liyq
最后编审: 2025-01-07:liyq
阅读次数: 9