0


缩放重叠聚类

Scaling Overlapping Clustering
课程网址: https://videolectures.net/videos/kdd2016_kloster_overlapping_clus...  
主讲教师: Kyle Kloster
开课单位: KDD 2016研讨会
开课时间: 2016-10-12
课程语种: 英语
中文简介:
识别社区在理解大型网络的结构中起着核心作用。随着从业者分析越来越大的网络,了解候选算法的计算复杂性变得越来越重要。我们研究了用于重叠社区检测的链接聚类算法的复杂性。我们为原始实现提供了新的、严格的界限,并提出了修改以降低算法复杂性。这些新的边界是图中楔形数量的函数。此外,我们还证明,对于几种社区检测算法,楔形比常用的图特征更能预测运行时间。最后,我们提出了一种方法来减少图中的楔形,该方法通过从网络中删除高阶顶点,用优化版本的链接聚类识别社区,并将社区与删除的顶点启发式匹配作为后处理步骤。我们实证证明,在几个常见的数据集上,处理时间大大缩短。
课程简介: Identifying communities plays a central role in understanding the structure of large networks. As practitioners analyze progressively larger networks, it becomes increasingly important to understand the computational complexity of candidate algorithms. We examine the complexity of the link clustering algorithm for overlapping community detection. We provide new, tight bounds for the original implementation and propose modifications to reduce algorithmic complexity. These new bounds are a function of the number of wedges in the graph. Additionally, we demonstrate that for several community detection algorithms, wedges predict runtime better than commonly cited graph features. We conclude by proposing a method to reduce the wedges in a graph by removing high-degree vertices from the network, identifying communities with an optimized version of link clustering, and heuristically matching communities with the removed vertices as a post-processing step. We empirically demonstrate a large reduction in processing time on several common data sets.
关 键 词: 大型网络; 候选算法; 启发式匹配
课程来源: 视频讲座网
数据采集: 2025-01-07:liyq
最后编审: 2025-01-07:liyq
阅读次数: 6