递增阶谱聚类的增量方法Incremental Method for Spectral Clustering of Increasing Orders |
|
课程网址: | https://videolectures.net/videos/kdd2016_chen_increasing_orders |
主讲教师: | Pin-Yu Chen |
开课单位: | KDD 2016研讨会 |
开课时间: | 2016-10-12 |
课程语种: | 英语 |
中文简介: | 图拉普拉斯矩阵的最小特征值和相关特征向量(即特征对)已被广泛用于光谱聚类和群落检测。然而,在实际应用中,集群或社区的数量(比如K)通常是先验未知的。因此,大多数现有方法要么启发式地选择K,要么用不同的K选择重复聚类方法并接受最佳聚类结果。第一种选择通常会产生次优结果,而第二种选择的计算成本很高。在这项工作中,我们提出了一种构建图拉普拉斯矩阵特征谱的增量方法。该方法利用图拉普拉斯矩阵的特征结构,在给定所有$K-1$最小特征对的集合的情况下,获得拉普拉斯矩阵的第K个本征对。我们提出的方法采用拉普拉斯矩阵,使批特征值分解问题转化为高效的序列前导特征对计算问题。作为一个实际应用,我们考虑了用户引导的谱聚类。具体来说,我们证明用户可以利用提出的增量方法进行有效的特征对计算,并根据多个聚类度量确定所需的聚类数量。 |
课程简介: | The smallest eigenvalues and the associated eigenvectors (i.e., eigenpairs) of a graph Laplacian matrix have been widely used for spectral clustering and community detection. However, in real-life applications the number of clusters or communities (say, K) is generally unknown a-priori. Consequently, the majority of the existing methods either choose K heuristically or they repeat the clustering method with different choices of K and accept the best clustering result. The first option, more often, yields suboptimal result, while the second option is computationally expensive. In this work, we propose an incremental method for constructing the eigenspectrum of the graph Laplacian matrix. This method leverages the eigenstructure of graph Laplacian matrix to obtain the K-th eigenpairs of the Laplacian matrix given a collection of all the $K-1$ smallest eigenpairs. Our proposed method adapts the Laplacian matrix such that the batch eigenvalue decomposition problem transforms into an efficient sequential leading eigenpair computation problem. As a practical application, we consider user-guided spectral clustering. Specifically, we demonstrate that users can utilize the proposed incremental method for effective eigenpair computation and determining the desired number of clusters based on multiple clustering metrics. |
关 键 词: | 增量方法; 阶谱聚类; 群落检测 |
课程来源: | 视频讲座网 |
数据采集: | 2025-01-07:liyq |
最后编审: | 2025-01-07:liyq |
阅读次数: | 12 |