0


网络中基于距离的影响:计算与最大化

Distance-Based Influence in Networks: Computation and Maximization
课程网址: https://videolectures.net/videos/kdd2016_cohen_influence_in_netwo...  
主讲教师: Edith Cohen
开课单位: KDD 2016研讨会
开课时间: 2016-10-12
课程语种: 英语
中文简介:
网络分析的核心前提是,网络中的实体从它们的连接中获得效用。节点的种子集$S$的影响被定义为$S$到$j$的{\em效用}在节点$j$上的总和。基于距离的效用是距离从$S$到$j$的递减函数,在社交网络分析和经济学的几个成功研究中得到了探索:网络形成游戏[Bloch和Jackson 2007],基于可达性的影响[Richardson和Domingos 2002;Kempe等人2003]``阈值影响[Gomez Rodriguez等人,2011];以及亲密中心性[Bavelas 1948]。我们制定了一个模型,统一并扩展了之前的工作,并解决了该领域的两个基本计算问题:影响神谕和影响最大化(IM)。预言机执行一些预处理,之后可以有效地计算任意种子集的影响查询。通过IM,我们寻找一组具有最大影响的给定大小的节点。由于IM问题在计算上很困难,我们转而寻找一个贪婪的节点序列,每个前缀的影响至少是相同大小的最佳种子集的1-1/e$。我们为这两个问题提出了第一个高度可扩展的算法,为近似质量和计算的近线性最坏情况边界提供了统计保证。我们进行了一项实验评估,证明了我们的设计在具有数亿条边的网络上的有效性。
课程简介: A premise at a heart of network analysis is that entities in a network derive utilities from their connections. The {\em influence} of a seed set $S$ of nodes is defined as the sum over nodes $j$ of the {\em utility} of $S$ to $j$. {\em Distance-based} utility, which is a decreasing function of the distance from $S$ to $j$, was explored in several successful research threads from social network analysis and economics: Network formation games [Bloch and Jackson 2007], Reachability-based influence [Richardson and Domingos 2002; Kempe et al. 2003]; ``threshold'' influence [Gomez-Rodriguez et al. 2011]; and {\em closeness centrality} [Bavelas 1948]. We formulate a model that unifies and extends this previous work and address the two fundamental computational problems in this domain: {\em Influence oracles} and {\em influence maximization} (IM). An oracle performs some preprocessing, after which influence queries for arbitrary seed sets can be efficiently computed. With IM, we seek a set of nodes of a given size with maximum influence. Since the IM problem is computationally hard, we instead seek a {\em greedy sequence} of nodes, with each prefix having influence that is at least $1-1/e$ of that of the optimal seed set of the same size. We present the first highly scalable algorithms for both problems, providing statistical guarantees on approximation quality and near-linear worst-case bounds on the computation. We perform an experimental evaluation which demonstrates the effectiveness of our designs on networks with hundreds of millions of edges.
关 键 词: 网络分析; 基本计算问题; 最佳种子集
课程来源: 视频讲座网
数据采集: 2025-01-07:liyq
最后编审: 2025-01-07:liyq
阅读次数: 12