0


用Blink模型测量图形接近度

Measuring Graph Proximity with Blink Model
课程网址: https://videolectures.net/videos/kdd2016_qian_blink_model  
主讲教师: Haifeng Qian
开课单位: KDD 2016研讨会
开课时间: 2016-10-12
课程语种: 英语
中文简介:
本文提出了一种新的图邻近度度量方法。该指标是网络可靠性的衍生指标。通过分析其属性并通过图形示例将其与其他邻近度度量进行比较,我们证明它比竞争对手更符合人类直觉。开发了一种新的确定性算法来近似这种具有实际复杂性的度量。通过两个链接预测基准(一个在合著网络中,一个在维基百科中)的实证评估显示了有希望的结果。例如,对于2007年Liben-Nowell和Kleinberg调查中报告的所有预测因子的每个图,所提出的测量的单一参数化所达到的精度比最佳精度高出14-35%。
课程简介: This paper proposes a new graph proximity measure. This measure is a derivative of network reliability. By analyzing its properties and comparing it against other proximity measures through graph examples, we demonstrate that it is more consistent with human intuition than competitors. A new deterministic algorithm is developed to approximate this measure with practical complexity. Empirical evaluation by two link prediction benchmarks, one in coauthorship networks and one in Wikipedia, shows promising results. For example, a single parameterization of the proposed measure achieves accuracies that are 14-35% above the best accuracy for each graph of all predictors reported in the 2007 Liben-Nowell and Kleinberg survey.
关 键 词: 图形接近度; Blink模型; 度量方法
课程来源: 视频讲座网
数据采集: 2025-01-07:liyq
最后编审: 2025-01-07:liyq
阅读次数: 12