0


通过学习全局特征改进共享单车系统的需求预测

Improving Demand Prediction in Bike Sharing System by Learning Global Features
课程网址: https://videolectures.net/videos/kdd2016_zeng_global_features  
主讲教师: Ming Zeng
开课单位: KDD 2016研讨会
开课时间: 2016-10-12
课程语种: 英语
中文简介:
自行车共享系统在许多开放式停靠站部署自行车,供公众共享使用。这些自行车可以在任何一个停靠站办理入住和退房手续。预测每日访问量对于服务提供商优化自行车分配和车站维护非常重要。在本文中,我们将这个预测问题表述为回归任务。通过数据分析,我们开发了几个对预测非常有帮助的特征。此外,我们证明了不同站点的访问模式存在显著差异。为了提高预测精度,我们提出了以站为中心的增强全局特征变换。利用梯度增强决策树(GBDT)和神经网络(NN)技术提取全局特征。实验结果表明,与两种基线方法相比,所提出的模型提供了更好的预测性能。
课程简介: A bike sharing system deploys bicycles at many open docking stations and makes them available to the public for shared use. These bikes can be checked-in and checked-out at any of the docking stations. Predicting daily visits is important for service providers to optimize bike allocation and station maintenance. In this paper, we formulate this prediction problem as a regression task. Through data analysis, we develop several features that are very helpful in predictions. Moreover, we demonstrate that there are significant differences among the patterns of visits at different stations. To improve prediction accuracy, we propose station-centric augmented with global feature transformation. The gradient boosting decision tree (GBDT) and neural network (NN) techniques are leveraged to extract global features. The experimental results demonstrate that the proposed model offers better prediction performance compared to two baseline approaches.
关 键 词: 全局特征; 共享单车; 需求预测; 决策树
课程来源: 视频讲座网
数据采集: 2025-01-08:liyq
最后编审: 2025-01-08:liyq
阅读次数: 10