0


基于蜂窝数据的城市活动生成模型

A Generative Model of Urban Activities from Cellular Data
课程网址: https://videolectures.net/videos/kdd2016_yin_generative_models  
主讲教师: Mogeng Yin
开课单位: KDD 2016研讨会
开课时间: 2016-10-12
课程语种: 英语
中文简介:
基于活动的出行模型是在快速变化的出行需求背景下评估交通状况的主要工具。然而,基于活动的模型的数据收集是通过旅行调查进行的,这些调查不频繁、昂贵,并反映了交通的变化和严重的延误。得益于无处不在的手机数据,我们看到了一个机会,可以用从网络运营商手机使用日志中提取的数据(如通话详细记录(CDR))对这些调查进行实质性补充。基于活动的出行需求模型描述了个体用户的出行行程,即(1)用户参与了哪些活动;(2) 当用户执行这些活动时;以及(3)用户如何前往活动地点。本文首先提出了一种在不过度过滤短期旅行的情况下提取用户停留位置的方法。其次,我们应用输入输出隐藏马尔可夫模型(IO-HMM)来揭示主要网络运营商收集的真实CDR数据(重点是旧金山湾区的定期通勤者)中的活动模式。本研究未收集或使用任何个人身份信息(PII)。分析的移动数据是匿名的,并严格遵守运营商的隐私政策进行汇总。我们的方法以模块化的基于活动的旅行需求模型的形式向从业者提供可操作的信息,并捕获基于时空背景的异构活动转换概率。
课程简介: Activity based travel models are the main tools used to evaluate traffic conditions in the context of rapidly changing travel demand. However, data collection for activity based models is performed through travel surveys that are infrequent, expensive, and reflect the changes in transportation with significant delays. Thanks to the ubiquitous cell phone data, we see an opportunity to substantially complement these surveys with data extracted from network carrier mobile phone usage logs, such as call detail records (CDRs). Activity based travel demand models describe travel itineraries of individual users, namely (1) what activities users are participating in; (2) when users perform these activities; and (3) how users travel to the activity locales. In this paper, we first present a method of extracting user stay locations while not over-filtering short-term travel. Second, we apply Input-Output Hidden Markov Models (IO-HMMs) to reveal the activity patterns in real CDR data (with a focus on the San Francisco Bay Area regular commuters) collected by a major network carrier. No personally identifiable information (PII) was gathered or used in conducting this study. The mobility data that was analyzed was anonymous and aggregated in strict compliance with the carrier’s privacy policy. Our approach delivers actionable information to the practitioners in a form of a modular activity-based travel demand model, and captures the heterogeneous activity transition probabilities conditioned on spatial-temporal context.
关 键 词: 蜂窝数据; 城市活动; 出行模型
课程来源: 视频讲座网
数据采集: 2025-01-08:liyq
最后编审: 2025-01-08:liyq
阅读次数: 17