考虑多周期和复杂模式的在线交通速度预测Online Traffic Speed Forecasting Considering Multiple Periodicities and Complex Patterns |
|
课程网址: | https://videolectures.net/videos/kdd2016_pao_traffic_speed |
主讲教师: | Hsing-Kuo Pao |
开课单位: | KDD 2016研讨会 |
开课时间: | 2016-10-12 |
课程语种: | 英语 |
中文简介: | 智能交通系统(ITS)的开发是为了帮助驾驶员和其他道路使用者做出更好的出行决策。近年来,在这一领域进行了许多研究工作。作为一种时间序列数据,我们可以按照研究时间序列的一般方面来分析交通数据,其中包括对多种周期性的分析。这项工作强调了对交通数据中可能存在的(长期)多周期性的研究,同时也考虑了更具体的方面,如意外的短期模式、空间关系和特征相关性。由于交通数据的周期性,大多数有经验的司机都可以在给定的特定时间和地点判断道路上的交通状态。我们的目标是提出一种具有上述许多方面的方法,以实现高质量的交通速度预测。我们选择高斯过程回归作为基础模型来实现该方法。考虑到考虑了上述所有方面的预测,我们享受速度预测性能,MAE在峰值性能时等于1到2英里/小时,比当前时间提前30分钟进行具有挑战性的速度预测。 |
课程简介: | Intelligent Transportation Systems (ITS) has been developed to aid drivers and other road-users to make a better travel decision. In recent years, many research efforts have been devoted in this field. Being one kind of time-series data, we can analyze the traffic data following the general aspects of studying time-series, which contains the analysis of periodicity of many kinds. This work highlights the study on the (long-term) multiple periodicities that could be found in traffic data while also considers more specific aspects such as unexpected short-term patterns, spatial relationship and feature correlations. Thanks to the periodicity of traffic data, most experienced drivers can tell how the traffic state will be on the road with given specific time and location. We aim to propose an approach with many of the above aspects to reach a quality traffic speed forecasting. We choose Gaussian process regression as the base model to realize the approach. Given the forecasting that considers all the above aspects, we enjoy the speed forecasting performance with MAE equal to one to two mph at its peak performance for a challenging speed forecasting 30-minute ahead of the current time. |
关 键 词: | 多周期; 复杂模式; 速度预测 |
课程来源: | 视频讲座网 |
数据采集: | 2025-01-08:liyq |
最后编审: | 2025-01-08:liyq |
阅读次数: | 9 |