利用人机交互机器学习进行时尚推荐Making fashion recommendations with human-in-the-loop machine learning |
|
课程网址: | https://videolectures.net/videos/kdd2016_klingenberg_machine_lear... |
主讲教师: | Brad Klingenberg |
开课单位: | KDD 2016研讨会 |
开课时间: | 2016-10-12 |
课程语种: | 英语 |
中文简介: | 大多数推荐算法在没有人为干预的情况下产生结果。特别是在时尚等难以量化的领域,将算法与专家人工策划相结合可以使推荐更有效。但它也会使训练和评估算法的传统方法复杂化。在本次演讲中,我将分享在Stitch Fix与人类进行个性化时尚推荐的经验教训,我们通过向客户实际交付商品来承诺我们的推荐。 |
课程简介: | Most recommendation algorithms produce results without human intervention. Especially in hard-to-quantify domains like fashion combining algorithms with expert human curation can make recommendations more effective. But it can also complicate traditional approaches to training and evaluating algorithms. In this talk I will share lessons from making personalized fashion recommendations with humans in the loop at Stitch Fix, where we commit to our recommendations through the physical delivery of merchandise to clients. |
关 键 词: | 人机交互; 机器学习; 时尚推荐 |
课程来源: | 视频讲座网 |
数据采集: | 2025-01-08:liyq |
最后编审: | 2025-01-08:liyq |
阅读次数: | 10 |