0


从极小表面的分支奇点到冰-水界面的非光滑点

From branching singularities of minimal surfaces to non-smoothness points on an ice-water interface
课程网址: https://videolectures.net/videos/8ecm2021_serra_from_branching  
主讲教师: Joaquim Serra
开课单位: 信息不详。欢迎您在右侧留言补充。
开课时间: 2021-07-06
课程语种: 英语
中文简介:
斯蒂芬的问题要追溯到19世纪,旨在描述一块冰在水中融化的过程。直到20世纪70年代,当Duvaut将其重新表述为一个漂亮的凸泛函的梯度流时,它的数学分析才取得了一些进展。1977年,卡法雷利证明了冰-水界面是一个光滑的表面,在某个闭集之外,即所谓的奇异集。这是一个巨大的突破。然而,在20世纪70年代可用的方法不允许对奇异集的结构进行精细的描述。在接下来的20年里,Almgren发展了他的最小曲面分支奇点理论,并在2008年将这些方法应用于不太知名的“薄障碍问题”。这引起了近年来Almgren方法在Stefan问题中的奇异性研究的成果。但是,即使有了这些强大的新工具,我们对冰-水界面上的非光滑点的完全满意的描述,也只做了一半
课程简介: Stefan’s problem, dating back to the XIX century, aims to describe the evolution of a block of ice melting in water. Its mathematical analysis experienced few progress until the 1970’s, when Duvaut reformulated it as the gradient flow of a nice convex functional. In 1977, Caffarelli proved that the ice-water interface is an smooth surface outside of a certain closed set: the so-called singular set. This was as huge breakthrough. However, methods available back in the 1970’s did not allow for a fine description of the structure of the singular set. During the following 20 years, Almgren developed his theory of branching singularities of minimal surfaces, and in 2008 these methods were applied to the not-so-well-known “thin obstacle problem”. This induced, in recent years, a fruitful use of Almgren’s methods to study singularities in Stefan’s problem. But even with these powerful new tools in hand, we were only halfway to obtaining a fully satisfying description of the non-smoothness points on an ice-water interface
关 键 词: 梯度流; 冰水界面; 奇异集
课程来源: 英国开放大学
数据采集: 2025-01-25:zsp
最后编审: 2025-02-26:zsp
阅读次数: 4