差分分级类的光滑紧化缩略图0.25 0.5 0.75 1 1.25 1.5 1.75 2差分分级类的光滑紧化Smooth compactifications of differential graded categories thumbnail 0.25 0.5 0.75 1 1.25 1.5 1.75 2 Smooth compactifications of differential graded categories |
|
课程网址: | https://videolectures.net/videos/8ecm2021_efimov_smooth_categorie... |
主讲教师: | Alexander Efimov |
开课单位: | 信息不详。欢迎您在右侧留言补充。 |
开课时间: | 2021-07-06 |
课程语种: | 英语 |
中文简介: | 我们将概述光滑范畴紧化的结果,以及它们的存在和构造问题。范畴光滑紧化的概念是对代数变量的一般概念的直接推广。首先,我们将解释在特征为零的域上有限型分离格式上相干束的派生类的光滑紧化的存在性的结果。也就是说,这样的派生范畴可以表示为光滑射影变化的派生范畴的商,由单个对象生成的三角化子范畴表示。然后我们将给出一个不具有光滑紧化的同伦有限DG范畴的例子:Kontsevich关于广义Hodge to de Rham退化的一个猜想的反例。如果时间允许,我们将利用DG分类模拟Wall的拓扑有限性障碍,给出光滑分类紧化存在的k理论判据。 |
课程简介: | We will give an overview of results on smooth categorical compactifications, the questions of their existence and their construction. The notion of a categorical smooth compactification is a straightforward generalization of the corresponding usual notion for algebraic varieties. First, we will explain the result on the existence of smooth compactifications of derived categories of coherent sheaves on separated schemes of finite type over a field of characteristic zero. Namely, such a derived category can be represented as a quotient of the derived category of a smooth projective variety, by a triangulated subcategory generated by a single object. Then we will give an example of a homotopically finite DG category which does not have a smooth compactification: a counterexample to one of the Kontsevich’s conjectures on the generalized Hodge to de Rham degeneration. If time permits, we will formulate a K-theoretic criterion for existence of a smooth categorical compactification, using a DG categorical analogue of Wall’s finiteness obstruction from topology. |
关 键 词: | 代数变量; 光华范畴紧化; 光华射影变化 |
课程来源: | 英国开放大学 |
数据采集: | 2025-01-25:zsp |
最后编审: | 2025-02-26:zsp |
阅读次数: | 11 |