通过分析隐性和显性客户反馈来检测时尚趋势和季节周期Detection of fashion trends and seasonal cycles through the analysis of implicit and explicit client feedback |
|
课程网址: | https://videolectures.net/videos/kdd2016_sanchis_ojeda_client_fee... |
主讲教师: | Roberto Sanchis-Ojeda |
开课单位: | KDD 2016研讨会 |
开课时间: | 2025-02-04 |
课程语种: | 英语 |
中文简介: | 在这篇文章中,我们描述了一种检测季节性和时尚趋势的新方法,通过统计建模客户对款式单位的反应如何随时间变化。在我们的框架中,客户反应需要采用二元结果变量的形式(例如,购买与不购买、点击与不点击)。然后,可以使用广义线性模型和包括时间特征的混合效应模型来研究客户行为。我们讨论了这些模型的系数如何告知哪些风格是流行还是过时,并使用模拟数据演示了这些方法。 |
课程简介: | In this contribution we describe a new approach to detecting seasonal and fashion trends, by statistically modeling how clients’ reaction to style units change with time. In our framework, client reactions are required to take the form of binary outcome variables (e.g., buy vs. do not buy, click vs. do not click). Client behavior can then be studied with generalized linear models and mixed-effect models that include temporal features. We discuss how the coefficients of such models inform which styles are going in or out of season or fashion and demonstrate these methods using simulated data. |
关 键 词: | 广义线性模型; 模拟数据; 客户反馈 |
课程来源: | 视频讲座网 |
数据采集: | 2025-02-21:liyq |
最后编审: | 2025-02-21:liyq |
阅读次数: | 6 |