信息网络表示、建模、学习和推理的动态过程Dynamic Processes over Information Networks Representation, Modeling, Learning and Inference |
|
课程网址: | https://videolectures.net/videos/kdd2016_song_dynamic_processes |
主讲教师: | Le Song |
开课单位: | KDD 2016研讨会 |
开课时间: | 2025-02-04 |
课程语种: | 英语 |
中文简介: | 如今,来自推特、脸书、Reddit、Stackoverflow、维基百科和Yelp等在线社交平台的大规模人类活动数据越来越可用,空间和时间分辨率也越来越高。这些数据为理解和建模人类动力学中的宏观(网络级)和微观(节点级)模式提供了巨大的机会。这些数据也推动了开发现实表示和模型以及学习、推理和控制算法的日益努力,以通过网络从这些动态过程中理解、预测、控制和提取知识。采取自下而上的方法已成为一种趋势,该方法首先考虑驱动网络中每个节点行为的随机机制,然后在网络层面产生全局宏观模式。然而,这种自下而上的方法也带来了重大的建模、算法和计算挑战。在本次演讲中,我将介绍用于表示、建模和执行人类活动数据的学习和推理的机器学习框架。该框架利用了时间点过程理论、概率图模型和优化的方法,并经常在各种建模和时间敏感的推理任务上产生最先进的结果。 |
课程简介: | Nowadays, large-scale human activity data from online social platforms, such as Twitter, Facebook, Reddit, Stackoverflow, Wikipedia and Yelp, are becoming increasing available and in increasing spatial and temporal resolutions. Such data provide great opportunities for understanding and modeling both macroscopic (network level) and microscopic (node-level) patterns in human dynamics. Such data have also fueled the increasing efforts on developing realistic representations and models as well as learning, inference and control algorithms to understand, predict, control and distill knowledge from these dynamic processes over networks. It has emerged as a trend to take a bottom-up approach which starts by considering the stochastic mechanism driving the behavior of each node in a network to later produce global, macroscopic patterns at a network level. However, this bottom-up approach also raises significant modeling, algorithmic and computational challenges. In this talk, I will present machine learning framework for representing, modeling, and performing learning and inference for human activity data. The framework leverage methods from temporal point process theory, probabilistic graphical models and optimization, and often produce state-of-the-art results on various modeling and time-sensitive inference tasks. |
关 键 词: | 信息网络; 人类动力学; 概率图模型 |
课程来源: | 视频讲座网 |
数据采集: | 2025-02-21:liyq |
最后编审: | 2025-02-27:liyq |
阅读次数: | 4 |