首页自然科学
   首页生物学
0


具有正则化输出和输入核方法的蛋白质-蛋白质网络推理

Protein-protein network inference with regularized output and input kernel methods
课程网址: https://videolectures.net/videos/mlsb2010_dalche_buc_ppn  
主讲教师: Florence d'Alche-Buc
开课单位: 信息不详。欢迎您在右侧留言补充。
开课时间: 2010-11-08
课程语种: 英语
中文简介:
在监督学习、无监督学习以及最近使用各种信息源(基因组、系统发育、蛋白质定位和功能)的半监督学习的背景下,预测两种蛋白质之间的物理相互作用已经得到了解决。如果定义一个将蛋白质之间的相似性编码为图中节点的内核,或者将其视为输入是蛋白质对的二元监督分类任务,则该问题可以被视为核矩阵完成任务。在本次演讲中,我们首先回顾了现有工作(矩阵完成、对的SVM、度量学习、训练集扩展),确定了每种方法的相关特征。然后我们定义了在输出需求空间中使用核技巧的输出核回归(OKR)框架。在回顾了迄今为止使用基于树的输出核回归方法获得的结果之后,我们开发了一个基于核岭回归的新方法家族,这些方法受益于在输入需求空间和输出需求空间中使用核。这些方法的主要兴趣在于施加各种正则化约束仍然会导致封闭形式的解决方案。我们特别展示了这种方法如何允许在网络推理问题的转导设置中处理未标记的数据,以及在类似于多任务的推理问题中处理多个网络。模拟数据和酵母数据的新结果说明了谈话。……
课程简介: Prediction of a physical interaction between two proteins has been addressed in the context of supervised learning, unsupervised learning and more recently, semi-supervised learning using various sources of information (genomic, phylogenetic, protein localization and function). The problem can be seen as a kernel matrix completion task if one defines a kernel that encodes similarity between proteins as nodes in a graph or alternatively, as a binary supervised classification task where inputs are pairs of proteins. In this talk, we first make a review of existing works (matrix completion, SVM for pairs, metric learning, training set expansion), identifying the relevant features of each approach. Then we define the framework of output kernel regression (OKR) that uses the kernel trick in the output feature space. After recalling the results obtained so far with tree-based output kernel regression methods, we develop a new family of methods based on Kernel Ridge Regression that benefit from the use of kernels both in the input feature space and the output feature space. The main interest of such methods is that imposing various regularization constraints still leads to closed form solutions. We show especially how such an approach allows to handle unlabeled data in a transductive setting of the network inference problem and multiple networks in a multi-task like inference problem. New results on simulated data and yeast data illustrate the talk.
关 键 词: 蛋白质物理相互作用预测; 输出核回归(OKR); 核矩阵完成
课程来源: vidiolectures
数据采集: 2025-02-24:yuhongrui
最后编审: 2025-02-24:yuhongrui
阅读次数: 1