0


与预测交互:黑盒机器学习模型的视觉检查

Interacting with Predictions: Visual Inspection of Black-box Machine Learning Models
课程网址: https://videolectures.net/videos/kdd2016_perer_learning_models  
主讲教师: Adam Perer
开课单位: KDD 2016研讨会
开课时间: 2025-02-04
课程语种: 英语
中文简介:
从解释和识别可操作的见解的角度理解预测模型是一项具有挑战性的任务。通常,一个特征在模型中的重要性只是一个粗略的估计,浓缩成一个数字。然而,我们的研究通过设计和实施交互式视觉分析系统Prospector,超越了这些天真的估计。通过提供交互式部分依赖诊断,数据科学家可以了解特征如何影响整体预测。此外,我们对本地化检查的支持使数据科学家能够了解如何以及为什么预测特定的数据点,并支持调整特征值和查看预测响应。然后,我们使用一个案例研究来评估我们的系统,该案例研究涉及一组数据科学家,他们改进了从电子病历中检测糖尿病发作的预测模型。
课程简介: Understanding predictive models, in terms of interpreting and identifying actionable insights, is a challenging task. Often the importance of a feature in a model is only a rough estimate condensed into one number. However, our research goes beyond these naïve estimates through the design and implementation of an interactive visual analytics system, Prospector. By providing interactive partial dependence diagnostics, data scientists can understand how features affect the prediction overall. In addition, our support for localized inspection allows data scientists to understand how and why specific datapoints are predicted as they are, as well as support for tweaking feature values and seeing how the prediction responds. Our system is then evaluated using a case study involving a team of data scientists improving predictive models for detecting the onset of diabetes from electronic medical records.
关 键 词: 预测交互; 黑盒模型; 机器学习
课程来源: 视频讲座网
数据采集: 2025-02-27:liyq
最后编审: 2025-02-27:liyq
阅读次数: 6