0


基于深度学习和高斯过程的视频数据时间学习

Temporal Learning in Video Data Using Deep Learning and Gaussian Processes
课程网址: https://videolectures.net/videos/kdd2016_srivastav_video_data  
主讲教师: Abhishek Srivastav
开课单位: KDD 2016研讨会
开课时间: 2025-02-04
课程语种: 英语
中文简介:
本文提出了一种使用深度学习和贝叶斯非参数技术对序列图像或视频中隐藏的、平稳的时间动态进行数据驱动建模的方法。特别是,使用深度卷积神经网络(CNN)以无监督的方式从单个图像中提取空间特征,然后使用高斯过程对深度CNN提取的空间特征的时间动态进行建模。通过分解空间和时间分量,并利用深度学习和高斯过程对各个子问题的优势,我们能够构建一个模型,该模型能够在使用相对较少的自由参数(或超参数)的同时捕捉复杂的时空现象。所提出的方法在涡流稳定燃烧室中燃烧火焰的高速灰度视频数据上进行了测试,其中使用了某些协议来诱导燃烧过程中的不稳定性。然后,所提出的方法用于检测和预测燃烧过程从稳定状态到不稳定状态的转变。实验证明,所提出的方法能够使用高速视频中很少的帧来检测不稳定的火焰状况。这是有用的,因为早期检测不稳定燃烧可以导致更好的控制策略来减轻不稳定。将所提出方法的结果与该领域的几个基线和最近的工作进行了比较和对比,发现所提出方法在检测精度、模型复杂性和检测前置时间方面的性能明显更好。
课程简介: This paper presents an approach for data-driven modeling of hidden, stationary temporal dynamics in sequential images or vidoes using deep learning and Bayesian non-parametric techniques. In particular, a Deep Convolutional Neural Network (CNN) is used to extract spatial features in an unsupervised fashion from individual images and then, a Gaussian process is used to model the temporal dynamics of the spatial features extracted by the Deep CNN. By decomposing the spatial and temporal components and utilizing the strengths of deep learning and Gaussian processes for the respective sub-problems, we are able to construct a model that is able to capture complex spatio-temporal phenomenon while using relatively small number of free parameters (or hyperparameters). The proposed approach is tested on high-speed grey-scale video data obtained of combustion flames in a swirl-stabilized combustor, where certain protocols are used to induce instability in combustion process. The proposed approach is then used to detect and predict the transition of the combustion process from stable to unstable regime. It is demonstrated that the proposed approach is able to detect unstable flame conditions using very few frames from high-speed video. This is useful as early detection of unstable combustion can lead to better control strategies to mitigate instability. Results from the proposed approach are compared and contrasted with several baselines and recent work in this area, the performance of the proposed approach is found to be significantly better in terms of detection accuracy, model complexity and lead-time to detection.
关 键 词: 深度学习; 高斯过程; 数据时间学习
课程来源: 视频讲座网
数据采集: 2025-03-11:liyq
最后编审: 2025-03-11:liyq
阅读次数: 3