使用词嵌入和LSTM进行可操作和政治文本分类Actionable and Political Text Classification Using Word Embeddings and LSTM |
|
课程网址: | https://videolectures.net/videos/kdd2016_rao_word_embeddings |
主讲教师: | Adithya Rao |
开课单位: | KDD 2016研讨会 |
开课时间: | 2025-02-04 |
课程语种: | 英语 |
中文简介: | 在这项工作中,我们将单词嵌入和具有长短期记忆(LSTM)的神经网络应用于文本分类问题,其中分类标准由应用程序的上下文决定。我们特别研究了两个应用程序。\\第一个是Actionability,我们在其中构建模型,将来自服务提供商客户的社交媒体消息分类为Actionable或Non-Actionable。我们为30多种不同的语言构建了可操作性模型,其中大多数模型的准确率约为85%,有些甚至达到了90%以上。我们还表明,使用带有词嵌入的LSTM神经网络大大优于传统技术其次,我们探讨了关于政治倾向的信息分类,其中社交媒体信息被分为民主党或共和党。该模型能够以87.57%的高准确率对消息进行分类。作为我们实验的一部分,我们改变了神经网络的不同超参数,并报告了这种变化对准确性的影响这些可操作性模型已部署到生产中,并通过优先处理要响应的消息来帮助公司代理提供客户支持。政治倾向模型已开放并可供更广泛使用。 |
课程简介: | In this work, we apply word embeddings and neural networks with Long Short-Term Memory (LSTM) to text classification problems, where the classification criteria are decided by the context of the application. We examine two applications in particular.\\ The first is that of Actionability, where we build models to classify social media messages from customers of service providers as Actionable or Non-Actionable. We build models for over 30 different languages for actionability, and most of the models achieve accuracy around 85%, with some reaching over 90% accuracy. We also show that using LSTM neural networks with word embeddings vastly outperform traditional techniques.\\ Second, we explore classification of messages with respect to political leaning, where social media messages are classified as Democratic or Republican. The model is able to classify messages with a high accuracy of 87.57%. As part of our experiments, we vary different hyperparameters of the neural networks, and report the effect of such variation on the accuracy.\\ These actionability models have been deployed to production and help company agents provide customer support by prioritizing which messages to respond to. The model for political leaning has been opened and made available for wider use. |
关 键 词: | 词嵌入; LSTM; 文本分类 |
课程来源: | 视频讲座网 |
数据采集: | 2025-03-16:liyq |
最后编审: | 2025-03-16:liyq |
阅读次数: | 4 |