具有差异度量的多任务标签传播Multi-Task Label Propagation with Dissimilarity Measures |
|
课程网址: | https://videolectures.net/videos/kdd2016_frasca_dissimilarity_mea... |
主讲教师: | Marco Frasca |
开课单位: | KDD 2016研讨会 |
开课时间: | 2025-02-04 |
课程语种: | 英语 |
中文简介: | 多任务算法通常使用任务相似性信息作为偏差来加速学习。我们认为,当分类问题不平衡时,任务相异性信息提供了一种更有效的偏见,因为稀有类标签往往能更好地与频繁类标签分开。特别是,我们表明,当使用相异度矩阵而不是相似性矩阵表示任务相关性信息时,基于图的分类的标签传播算法的多任务扩展在蛋白质功能预测问题上效果更好。 |
课程简介: | Multi-task algorithms typically use task similarity information as a bias to speed up learning. We argue that, when the classification problem is unbalanced, task dissimilarity information provides a more effective bias, as rare class labels tend to be better separated from the frequent class labels. In particular, we show that a multi-task extension of the label propagation algorithm for graph-based classification works much better on protein function prediction problems when the task relatedness information is represented using a dissimilarity matrix as opposed to a similarity matrix. |
关 键 词: | 差异度量; 多任务; 标签传播 |
课程来源: | 视频讲座网 |
数据采集: | 2025-03-16:liyq |
最后编审: | 2025-03-16:liyq |
阅读次数: | 5 |