用于连通性的深度学习Deep Learning for Connectomicss |
|
课程网址: | https://videolectures.net/videos/kdd2016_ji_deep_learning |
主讲教师: | Shuiwang Ji |
开课单位: | KDD 2016研讨会 |
开课时间: | 2025-02-04 |
课程语种: | 英语 |
中文简介: | 旨在解开人类大脑奥秘的研究的重要性最近在世界范围内得到了认可。2013年1月,欧盟选择人脑项目作为其两个旗舰项目之一。2013年4月,白宫宣布了通过推进创新神经技术(Brain)倡议进行大脑研究,以生成大脑的动态地图。随着这些项目的推进,大数据分析将在将大脑大数据转化为有用知识方面发挥越来越重要的作用。分析大脑数据的一个关键挑战是从大脑图像中构建特征表示。在这次演讲中,我将讨论我们在开发用于从大脑数据中学习表征的深度计算模型方面所做的努力。特别是,我将详细介绍如何使用深度学习方法来阐明神经元之间的微观大脑连接组学。我还将展示我们的方法可用于许多不同的计算大脑发现任务。此外,它们还可以用于大脑分析以外的其他领域。 |
课程简介: | The importance of research that aims to unlock the mystery of the human brain has recently been recognized worldwide. In January 2013, the European Union selected the Human Brain Project to be one of its two flagship projects. In April 2013, the White House announced the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to generate a dynamic map of the brain. As these projects move forward, big data analytics will be playing increasingly important roles in converting big brain data into useful knowledge. A key challenge in analyzing brain data is to construct feature representations from brain images. In this talk, I will discuss our efforts in developing deep computational models for learning representations from brain data. In particular, I will provide details on how to use deep learning methods to elucidate the micro-scale brain connectomics among neurons. I will also show that our methods can be used in a number of diverse computational brain discovery tasks. Additionally, they may be used in other areas beyond brain analytics. |
关 键 词: | 连通性; 深度学习; 创新神经技术 |
课程来源: | 视频讲座网 |
数据采集: | 2025-03-16:liyq |
最后编审: | 2025-03-16:liyq |
阅读次数: | 5 |