论一致性代理风险最小化与财产诱导On Consistent Surrogate Risk Minimization and Property Elicitation |
|
课程网址: | https://videolectures.net/videos/colt2015_agarwal_property_elicit... |
主讲教师: | Shivani Agarwal |
开课单位: | 信息不详。欢迎您在右侧留言补充。 |
开课时间: | 2025-02-04 |
课程语种: | 英语 |
中文简介: | 代理风险最小化是监督学习的一个流行框架;属性推导是概率预测、机器学习、统计学和经济学中一个被广泛研究的领域。在本文中,我们通过显示监督学习中的校准代理损失本质上可以被视为引发或估计潜在条件标签分布的某些属性,这些属性足以在目标兴趣损失下构建最佳分类器,从而将这两个主题联系起来。我们的研究有助于揭示凸校准代理的设计。我们还提出了一个新的框架,通过引入允许构建潜在分布的“粗略”估计的属性,在低噪声条件下设计凸校准代理。 |
课程简介: | Surrogate risk minimization is a popular framework for supervised learning; property elicitation is a widely studied area in probability forecasting, machine learning, statistics and economics. In this paper, we connect these two themes by showing that calibrated surrogate losses in supervised learning can essentially be viewed as eliciting or estimating certain properties of the underlying conditional label distribution that are sufficient to construct an optimal classifier under the target loss of interest. Our study helps to shed light on the design of convex calibrated surrogates. We also give a new framework for designing convex calibrated surrogates under low-noise conditions by eliciting properties that allow one to construct ‘coarse’ estimates of the underlying distribution. |
关 键 词: | 监督学习; 代理风险最小化:最佳分类器 |
课程来源: | 视频讲座网 |
数据采集: | 2025-03-28:zsp |
最后编审: | 2025-03-28:zsp |
阅读次数: | 5 |