流数据的MOA概念漂移主动学习策略MOA Concept Drift Active Learning Strategies for Streaming Data |
|
课程网址: | https://videolectures.net/videos/wapa2011_bifet_moa |
主讲教师: | Albert Bifet |
开课单位: | 信息不详。欢迎您在右侧留言补充。 |
开课时间: | 2025-02-04 |
课程语种: | 英语 |
中文简介: | 我们提出了一个动态数据流主动学习框架,作为MOA系统的扩展。在学习对流数据进行分类时,获得真实的标签可能需要付出很大的努力,并且可能会产生过高的成本。主动学习的重点是学习一个准确的模型,尽可能少的标签。流数据给主动学习带来了额外的挑战,因为数据分布可能会随着时间的推移而变化(概念漂移),分类器需要适应。传统的主动学习策略侧重于查询最不确定的实例,这些实例通常集中在决策边界附近。如果变化没有发生在边界附近,它们将被忽略,分类器将无法适应。我们提出了一个实现主动学习策略的软件系统,扩展了MOA框架。本软件在GNU GPL许可下发布。 |
课程简介: | We present a framework for active learning on evolving data streams, as an extension to the MOA system. In learning to classify streaming data, obtaining the true labels may require major effort and may incur excessive cost. Active learning focuses on learning an accurate model with as few labels as possible. Streaming data poses additional challenges for active learning, since the data distribution may change over time (concept drift) and classifiers need to adapt. Conventional active learning strategies concentrate on querying the most uncertain instances, which are typically concentrated around the decision boundary. If changes do not occur close to the boundary, they will be missed and classifiers will fail to adapt. We propose a software system that implements active learning strategies, extending the MOA framework. This software is released under the GNU GPL license. |
关 键 词: | 动态数据流; 主动学习; 概念漂移 |
课程来源: | 视频讲座网 |
数据采集: | 2025-03-28:zsp |
最后编审: | 2025-03-28:zsp |
阅读次数: | 9 |