最大与最小:张量分解和ICA与近线性样本复杂度Max vs Min: Tensor Decomposition and ICA with nearly Linear Sample Complexity |
|
课程网址: | https://videolectures.net/videos/colt2015_kyng_sample_complexity |
主讲教师: | Rasmus J. Kyng |
开课单位: | 信息不详。欢迎您在右侧留言补充。 |
开课时间: | 2025-02-04 |
课程语种: | 英语 |
中文简介: | 我们提出了一种简单、通用的技术,用于降低矩阵和张量分解算法应用于分布的样本复杂性。我们使用该技术给出了一个多项式时间的标准ICA算法,该算法的样本复杂度在维数上接近线性,从而大大改进了先前的边界。分析是基于随机多项式的性质,即多项式集合的间距。我们的技术也适用于张量分解的其他应用,包括球面高斯混合模型。 |
课程简介: | We present a simple, general technique for reducing the sample complexity of matrix and tensor decomposition algorithms applied to distributions. We use the technique to give a polynomial-time algorithm for standard ICA with sample complexity nearly linear in the dimension, thereby improving substantially on previous bounds. The analysis is based on properties of random polynomials, namely the spacings of an ensemble of polynomials. Our technique also applies to other applications of tensor decompositions, including spherical Gaussian mixture models. |
关 键 词: | 降低矩阵; 张量分解算法:样本复杂性 |
课程来源: | 视频讲座网 |
数据采集: | 2025-03-28:zsp |
最后编审: | 2025-03-28:zsp |
阅读次数: | 5 |