标记在线本地学习的最佳后悔界限Label optimal regret bounds for online local learning |
|
课程网址: | https://videolectures.net/videos/colt2015_risteski_local_learning |
主讲教师: | Andrej Risteski |
开课单位: | 信息不详。欢迎您在右侧留言补充。 |
开课时间: | 2025-02-04 |
课程语种: | 英语 |
中文简介: | 我们解决了Christiano (2014b)在COLT ' 14中提出的关于在线局部学习可实现的后悔对标签集大小的最优依赖的开放性问题。在这个框架中,算法在每一步中显示一对从n个项目中选择的项目。然后,学习者从大小为L的标签集中预测每个项目的标签,并获得真正有价值的回报。这是一个自然的框架,它捕获了许多有趣的场景,如协同过滤、在线赌博和在线最大切割等。Christiano (2014a)针对该问题设计了一种高效的在线学习算法,其遗憾率为O(\sqrt{nL^3T}),其中T为轮数。从信息论的角度来说,我们可以实现0 (\sqrt{n log LT})的遗憾。在这个框架中留下的一个主要悬而未决的问题是如何缩小上述差距。在这项工作中,我们通过两个主要结果提供了上述问题的完整答案。我们通过更严格的分析表明,Christiano (2014a)的基于半确定规划的算法实际上实现了O(\sqrt{n L T})的遗憾。其次,我们给出了一个匹配的计算下界。也就是说,我们证明了具有较低遗憾的在线局部学习的多项式时间算法意味着在被广泛认为是困难的制度中种植团问题的多项式时间算法。在我们提出的关于种植密集子图的一个相关猜想下,我们证明了一个类似的硬度结果。与植团不同,密集子图版本没有拟多项式时间算法。在线学习的计算下界相对较少,我们希望在这项工作中发展的思想也将导致其他在线学习场景的下界。 |
课程简介: | We resolve an open question from Christiano (2014b) posed in COLT’14 regarding the optimal dependency of the regret achievable for online local learning on the size of the label set. In this framework the algorithm is shown a pair of items at each step, chosen from a set of n items. The learner then predicts a label for each item, from a label set of size L and receives a real valued payoff. This is a natural framework which captures many interesting scenarios such as collaborative filtering, online gambling, and online max cut among others. Christiano (2014a) designed an efficient online learning algorithm for this problem achieving a regret of O(\sqrt{nL^3T}), where T is the number of rounds. Information theoretically, one can achieve a regret of O(\sqrt{n log LT}). One of the main open questions left in this framework concerns closing the above gap. In this work, we provide a complete answer to the question above via two main results. We show, via a tighter analysis, that the semi-definite programming based algorithm of Christiano (2014a), in fact achieves a regret of O(\sqrt{n L T}). Second, we show a matching computational lower bound. Namely, we show that a polynomial time algorithm for online local learning with lower regret would imply a polynomial time algorithm for the planted clique problem in regimes widely believed to be hard. We prove a similar hardness result under a related conjecture concerning planted dense subgraphs that we put forth. Unlike planted clique, the dense subgraph version does not have quasi-polynomial time algorithms. Computational lower bounds for online learning are relatively rare, and we hope that the ideas developed in this work will lead to lower bounds for other online learning scenarios as well. |
关 键 词: | 局部学习; 标签集大小; 协同过滤 |
课程来源: | 视频讲座网 |
数据采集: | 2025-03-30:zsp |
最后编审: | 2025-03-30:zsp |
阅读次数: | 3 |