首页数学
0


基于熵对偶的广义可混性

Generalized Mixability via Entropic Duality
课程网址: https://videolectures.net/videos/colt2015_reid_entropic_duality  
主讲教师: Mark Reid
开课单位: 信息不详。欢迎您在右侧留言补充。
开课时间: 2025-02-04
课程语种: 英语
中文简介:
可混性是损失的一种性质,它表现在与专家建议进行预测的博弈中可能出现快速收敛的情况。我们证明了可混性的一个关键性质是一般化的,并且通常理论中存在的$\exp$和$\log$操作并不像人们想象的那样特殊。在此过程中,我们引入了一个更一般的$\Phi$ -可混合性概念,其中$\Phi$是一个一般熵(\ie,任何关于概率的凸函数)。我们展示了由任何这样的熵的凸对偶共享的属性如何产生一个自然算法(遗憾界的最小化器),该算法类似于经典的聚合算法,在使用$\Phi$ -可混合损失时保证了恒定的遗憾。我们描述了哪些$\Phi$具有非平凡的$\Phi$ -可混合损失,并将$\Phi$ -可混合性及其相关的聚合算法与基于潜在的方法、Blackwell-like条件、镜像下降和金融风险度量联系起来。我们还定义了不同熵之间的“优势”概念,根据它们保证的界限,并推测经典可混性给出了最优界限,为此我们提供了一些支持的经验证据。
课程简介: Mixability is a property of a loss which characterizes when fast convergence is possible in the game of prediction with expert advice. We show that a key property of mixability generalizes, and the $\exp$ and $\log$ operations present in the usual theory are not as special as one might have thought. In doing so we introduce a more general notion of $\Phi$-mixability where $\Phi$ is a general entropy (\ie, any convex function on probabilities). We show how a property shared by the convex dual of any such entropy yields a natural algorithm (the minimizer of a regret bound) which, analogous to the classical Aggregating Algorithm, is guaranteed a constant regret when used with $\Phi$-mixable losses. We characterize which $\Phi$ have non-trivial $\Phi$-mixable losses and relate $\Phi$-mixability and its associated Aggregating Algorithm to potential-based methods, a Blackwell-like condition, mirror descent, and risk measures from finance. We also define a notion of ``dominance'' between different entropies in terms of bounds they guarantee and conjecture that classical mixability gives optimal bounds, for which we provide some supporting empirical evidence.
关 键 词: 可混合性概念; 遗憾界的最小化器; 最优界限
课程来源: 视频讲座网
数据采集: 2025-03-30:zsp
最后编审: 2025-03-30:zsp
阅读次数: 2