首页数学
0


离散点过程的快速混合

Fast Mixing for Discrete Point Processes
课程网址: https://videolectures.net/videos/colt2015_rebeschini_point_proces...  
主讲教师: Patrick Rebeschini
开课单位: 信息不详。欢迎您在右侧留言补充。
开课时间: 2025-02-04
课程语种: 英语
中文简介:
我们研究了从离散点过程中设计快速混合马尔可夫链蒙特卡罗算法的系统机制。这样的过程被定义为通过有界集合函数$f:2^V\rightarrow \mathbb{R}$在有限集合$V$的所有子集$S\subseteq 2^V$上的概率分布$\mu(S)\propto \exp(f(S))$。特别是,以子模函数为特征的离散点过程的子类(包括确定性点过程、对数子模分布和子模点过程)最近在机器学习中获得了很多兴趣,并显示出对多样性和覆盖建模的有效性。我们表明,如果集合函数(不一定是次模)显示出相关性衰减的自然概念,那么就有可能设计快速混合马尔可夫链蒙特卡罗方法,该方法在边缘近似上提供无尺寸误差界限。我们引入的条件涉及对集合函数的二阶(离散)导数的控制。然后给出了当集合函数是次模时快速混合的充分条件,并将结果专门化为典型例子。
课程简介: We investigate the systematic mechanisms for designing fast mixing Markov chains Monte Carlo algorithms to sample from discrete point processes. Such processes are defined as probability distributions $\mu(S)\propto \exp(f(S))$ over all subsets $S\subseteq 2^V$ of a finite set $V$ through a bounded set function $f:2^V\rightarrow \mathbb{R}$. In particular, a subclass of discrete point processes characterized by submodular functions (which include determinantal point processes, log-submodular distributions, and submodular point processes) has recently gained a lot of interest in machine learning and shown to be effective for modeling diversity and coverage. We show that if the set function (not necessarily submodular) displays a natural notion of decay of correlation, then it is possible to design fast mixing Markov Chain Monte Carlo methods that provide size-free error bounds on marginal approximations. The conditions that we introduce involve a control on the second order (discrete) derivatives of set functions. We then provide sufficient conditions for fast mixing when the set function is submodular, and specialize our results for canonical examples.
关 键 词: 有界集合函数; 子模函数; 离散点
课程来源: 视频讲座网
数据采集: 2025-03-31:zsp
最后编审: 2025-03-31:zsp
阅读次数: 2