首页数学
0


有限样本的快速精确矩阵补全

Fast Exact Matrix Completion with Finite Samples
课程网址: https://videolectures.net/videos/colt2015_netrapalli_finite_sampl...  
主讲教师: Praneeth Netrapalli
开课单位: 信息不详。欢迎您在右侧留言补充。
开课时间: 2025-02-04
课程语种: 英语
中文简介:
矩阵补全是通过观察一个低秩矩阵的一小部分条目来恢复它的问题。最近的一系列作品{Keshavan2012,JainNS2013,Hardt2013}提出了基于快速非凸优化的迭代算法来解决这个问题。然而,所有这些结果中的样本复杂性在依赖于秩、条件数和期望的精度方面都是次优的。本文提出了一种快速迭代算法,该算法通过观察$\order{nr^5 \log^ 3n}$项来解决矩阵补全问题,该算法与条件数和期望精度无关。我们算法的运行时间是$\order{nr^7\log^3 n\log 1/\epsilon}$,在矩阵的维数上接近线性。据我们所知,这是第一个具有有限样本复杂度(即独立于$\epsilon$)的精确矩阵补全的近线性时间算法。我们的算法是基于一个众所周知的投影梯度下降方法,其中投影是在低秩矩阵的(非凸)集合上。在我们的结果中有两个关键思想:1)我们的参数是基于$\ well的_\ inty $范数势函数(相对于谱范数),并提供了一种新的方法来获得它的摄动界。2)证明并利用Davis-Kahan定理的自然推广,得到了具有良好特征间隙的矩阵的最佳低秩逼近的摄动界。这两种观点可能都有各自的利益。
课程简介: Matrix completion is the problem of recovering a low rank matrix by observing a small fraction of its entries. A series of recent works \citep{Keshavan2012,JainNS2013,Hardt2013} have proposed fast non-convex optimization based iterative algorithms to solve this problem. However, the sample complexity in all these results is sub-optimal in its dependence on the rank, condition number and the desired accuracy. In this paper, we present a fast iterative algorithm that solves the matrix completion problem by observing $\order{nr^5 \log^3 n}$ entries, which is independent of the condition number and the desired accuracy. The run time of our algorithm is $\order{nr^7\log^3 n\log 1/\epsilon}$ which is near linear in the dimension of the matrix. To the best of our knowledge, this is the first near linear time algorithm for exact matrix completion with finite sample complexity (i.e. independent of $\epsilon$). Our algorithm is based on a well known projected gradient descent method, where the projection is onto the (non-convex) set of low rank matrices. There are two key ideas in our result: 1) our argument is based on a $\ell_\infty$ norm potential function (as opposed to the spectral norm) and provides a novel way to obtain perturbation bounds for it. 2) we prove and use a natural extension of the Davis-Kahan theorem to obtain perturbation bounds on the best low rank approximation of matrices with good eigen-gap. Both of these ideas may be of independent interest.
关 键 词: 矩阵补全; 低秩矩阵; 迭代算法
课程来源: 视频讲座网
数据采集: 2025-03-31:zsp
最后编审: 2025-03-31:zsp
阅读次数: 2