条件抽样下更快的测试算法Faster Algorithms for Testing under Conditional Sampling |
|
课程网址: | https://videolectures.net/videos/colt2015_suresh_conditional_samp... |
主讲教师: | Ananda Theertha Suresh |
开课单位: | 信息不详。欢迎您在右侧留言补充。 |
开课时间: | 2025-02-04 |
课程语种: | 英语 |
中文简介: | 最近,对于运行时和样本需求在域大小$k$上是次线性的分布测试,人们产生了相当大的兴趣。我们在条件抽样模型下研究了两个最重要的测试,其中每个查询指定域的一个子集$S$,响应是根据底层分布从$S$提取的样本。对于同一性测试,即底层分布是否等于一个特定的给定分布或$\delta$ -不同于它,我们将已知的时间和样本复杂性从$O(\delta^{-4})$降低到$O(\delta^{-2})$,从而匹配信息理论的下界。对于密切性测试,即询问观察数据集的两个分布是否相等或不同,我们将现有的复杂性从$O(\delta^{-4} \log^5 k)$降低到偶数次对数$O(\delta^{-5} \log \log k)$,并提供了一个更好的约束,以解决Bertinoro研讨会上的一个开放问题。 |
课程简介: | There has been considerable recent interest in distribution-tests whose run-time and sample requirements are sublinear in the domain-size $k$. We study two of the most important tests under the conditional-sampling model where each query specifies a subset $S$ of the domain, and the response is a sample drawn from $S$ according to the underlying distribution. For identity testing, which asks whether the underlying distribution equals a specific given distribution or $\delta$-differs from it, we reduce the known time and sample complexities from $O(\delta^{-4})$ to $O(\delta^{-2})$, thereby matching the information theoretic lower bound. For closeness testing, which asks whether two distributions underlying observed data sets are equal or different, we reduce existing complexity from $O(\delta^{-4} \log^5 k)$ to an even sub-logarithmic $O(\delta^{-5} \log \log k)$, and providing a better bound to an open problem in Bertinoro Workshop on Sublinear Algorithms. |
关 键 词: | 次线性; 条件抽样模型; 底层分布 |
课程来源: | 视频讲座网 |
数据采集: | 2025-03-31:zsp |
最后编审: | 2025-03-31:zsp |
阅读次数: | 2 |