0


分类时间序列的Granger因果网络

Granger Causality Networks for Categorical Time Series
课程网址: https://videolectures.net/videos/kdd2016_tank_granger_causality  
主讲教师: Alex Tank
开课单位: KDD 2016研讨会
开课时间: 2025-02-04
课程语种: 英语
中文简介:
我们提出了两种基于模型的方法来学习多元分类时间序列的格兰杰因果网络。我们的第一个建议是基于混合过渡分布(MTD)模型。传统上,MTD受到非凸目标、不可识别性和存在许多局部最优解的困扰。为了规避这些问题,我们将MTD中的推理重新定义为凸问题。新公式促进了MTD在高维多元时间序列中的应用。我们的第二个建议基于多输出逻辑自回归模型,该模型虽然是一个简单的扩展,但以前从未应用于多元范畴时间序列的分析。我们研究了这两种方法的可识别性条件,为MTD设计了新的优化算法,并在模拟实验中比较了MTD和mLTD。我们的方法同时提供了分类时间序列中网络推理方法的比较,并为MTD模型中的现代正则化推理打开了大门。
课程简介: We present two model-based methods for learning Granger causality networks for multivariate categorical time series. Our first proposal is based on the mixture transition distribution (MTD) model. Traditionally, MTD is plagued by a nonconvex objective, non-identifiability, and presence of many local optima. To circumvent these problems, we recast inference in the MTD as a convex problem. The new formulation facilitates the application of MTD to high-dimensional multivariate time series. Our second proposal is based on a multi-output logistic autoregressive model, which while a straightforward extension, has not been previously applied to the analysis of multivariate categorial time series. We investigate identifiability conditions of both methods, devise novel optimization algorithms for the MTD, and compare the MTD and mLTD in simulated experiments. Our approach simultaneously provides a comparison of methods for network inference in categorical time series and opens the door to modern, regularized inference in MTD model.
关 键 词: 分类时间序列; 因果网络; 基于模型
课程来源: 视频讲座网
数据采集: 2025-03-31:liyq
最后编审: 2025-03-31:liyq
阅读次数: 1