首页数学
0


基于谱稀疏化的高斯图形模型有效采样

Efficient Sampling for Gaussian Graphical Models via Spectral Sparsification
课程网址: https://videolectures.net/videos/colt2015_cheng_spectral_sparsifi...  
主讲教师: Dehua Cheng
开课单位: 信息不详。欢迎您在右侧留言补充。
开课时间: 2025-02-04
课程语种: 英语
中文简介:
基于计算统计推断的基本抽样问题,我们开发了一个基于谱稀疏化的工具集,用于涉及高斯抽样、矩阵泛函和可逆马尔可夫链的一系列基本问题。根据高斯图模型与谱图理论的最新突破之间的联系,我们给出了以下基本矩阵问题的第一个近线性时间算法:给定一个n × n拉普拉斯矩阵M和一个常数-1<= p <= 1,提供对稀疏n × n线性算子C的有效访问,使得M^p \约C C^T,其中\约表示谱相似度。当p设置为-1时,这给出了第一个并行采样算法,对于具有对称对角占优(SDD)精度矩阵的高斯随机场,它在总工作量和随机性方面都是本质上最优的。它只需要近线性的工作和2n个随机的单变量高斯样本,就可以在多对数深度生成一个n维的随机高斯样本。我们方法的关键成分是光谱稀疏化与多层方法的集成:我们的算法基于将M^p分解为条件良好的矩阵的乘积,然后引入幂并用稀疏近似替换密集矩阵。对于这种方法,我们给出了两种可能具有独立意义的稀疏化方法。第一个方法在因子上调用麦克劳林级数,而第二个方法建立在我们新的随机游走矩阵多项式的近线性时间谱稀疏化算法上。我们希望这些算法的进步也将有助于加强机器学习和谱图理论之间的联系,这是理解大数据和网络的两个最活跃的领域。
课程简介: Motivated by a sampling problem basic to computational statistical inference, we develop a toolset based on spectral sparsification for a family of fundamental problems involving Gaussian sampling, matrix functionals, and reversible Markov chains. Drawing on the connection between Gaussian graphical models and the recent breakthroughs in spectral graph theory, we give the first nearly linear time algorithm for the following basic matrix problem: Given an n-by-n Laplacian matrix M and a constant -1<= p <= 1, provide efficient access to a sparse n-by-n linear operator C such that M^p \approx C C^T, where \approx denotes spectral similarity. When p is set to -1, this gives the first parallel sampling algorithm that is essentially optimal both in total work and randomness for Gaussian random fields with symmetric diagonally dominant (SDD) precision matrices. It only requires nearly linear work and 2n i.i.d. random univariate Gaussian samples to generate an n-dimensional i.i.d. Gaussian random sample in polylogarithmic depth. The key ingredient of our approach is an integration of spectral sparsification with multilevel method: Our algorithms are based on factoring M^p into a product of well-conditioned matrices, then introducing powers and replacing dense matrices with sparse approximations. We give two sparsification methods for this approach that may be of independent interest. The first invokes Maclaurin series on the factors, while the second builds on our new nearly linear time spectral sparsification algorithm for random-walk matrix polynomials. We expect these algorithmic advances will also help to strengthen the connection between machine learning and spectral graph theory, two of the most active fields in understanding large data and networks.
关 键 词: 基本抽样问题:高斯抽样:矩阵泛函
课程来源: 视频讲座网
数据采集: 2025-04-02:zsp
最后编审: 2025-04-02:zsp
阅读次数: 1