0


基于期望传播的相关时间序列可扩展聚类

Scalable Clustering of Correlated Time Series using Expectation Propagation
课程网址: https://videolectures.net/videos/kdd2016_aicher_expectation_propa...  
主讲教师: Christopher Aicher
开课单位: KDD 2016研讨会
开课时间: 2025-02-04
课程语种: 英语
中文简介:
我们感兴趣的是找到时间序列的簇,使得簇内的序列是相关的,簇之间的序列是独立的。用于推断时间序列相关簇的现有贝叶斯方法要么:(i)需要对潜在变量进行条件化以解耦时间序列,但会导致混合缓慢,要么(ii)需要计算崩溃的可能性,但计算量会随着每个簇的时间序列数量而立方缩放。为了有效地推断潜在的集群分配,我们考虑了以精确性换取可扩展性的近似方法。我们的主要贡献是为坍缩似然方法开发了一种基于期望传播的近似方法。我们对合成数据的实证结果表明,我们的方法是线性缩放的,而不是立方缩放的,同时保持了具有竞争力的准确性。
课程简介: We are interested in finding clusters of time series such that series within a cluster are correlated and series between clusters are independent. Existing Bayesian methods for inferring correlated clusters of time series either: (i) require conditioning on latent variables to decouple time series, but results in slow mixing or (ii) require calculating a collapsed likelihood, but with computation scaling cubically with the number of time series per cluster. To infer the latent cluster assignments efficiently, we consider approximate methods that trade exactness for scalability. Our main contribution is the development of an expectation propagation based approximation for the collapsed likelihood approach. Our empirical results on synthetic data show our methods scale linearly instead of cubically, while maintaining competitive accuracy.
关 键 词: 期望传播; 时间序列; 可扩展聚类
课程来源: 视频讲座网
数据采集: 2025-04-06:liyq
最后编审: 2025-04-06:liyq
阅读次数: 9