判别实验设计Discriminative Experimental Design |
|
课程网址: | https://videolectures.net/videos/ecmlpkdd2011_zhang_design |
主讲教师: | Yu Zhang |
开课单位: | 信息不详。欢迎您在右侧留言补充。 |
开课时间: | 2011-11-29 |
课程语种: | 英语 |
中文简介: | 由于标记数据通常既费力又昂贵,因此在许多应用中可用的标记数据相当有限。主动学习是一种主动选择未标记的数据点进行标记的学习方法,以缓解标记数据不足的问题。在本文中,我们通过提出一个新的无标记数据选择标准,扩展了以前的主动学习方法,称为转换实验设计(TED)。我们的方法被称为判别实验设计(DED),它结合了基于边缘的判别信息和数据分布信息,因此它可以被视为TED的判别扩展。我们报告了在一些基准数据集上进行的实验,以证明DED的有效性。 |
课程简介: | Since labeling data is often both laborious and costly, the labeled data available in many applications is rather limited. Active learning is a learning approach which actively selects unlabeled data points to label as a way to alleviate the labeled data deficiency problem. In this paper, we extend a previous active learning method called transductive experimental design (TED) by proposing a new unlabeled data selection criterion. Our method, called discriminative experimental design (DED), incorporates both margin-based discriminative information and data distribution information and hence it can be seen as a discriminative extension of TED. We report experiments conducted on some benchmark data sets to demonstrate the effectiveness of DED. |
关 键 词: | 数据标记:主动学习:判别实验设计 |
课程来源: | 视频讲座网 |
数据采集: | 2025-04-07:zsp |
最后编审: | 2025-04-07:zsp |
阅读次数: | 9 |