0


通过预测的皮质学习

Cortical Learning via Prediction
课程网址: https://videolectures.net/videos/colt2015_papadimitriou_learning_...  
主讲教师: Christos H. Papadimitriou
开课单位: 信息不详。欢迎您在右侧留言补充。
开课时间: 2015-08-20
课程语种: 英语
中文简介:
大脑中的学习机制是什么?尽管神经科学取得了惊人的进步,但我们似乎还没有接近答案。我们介绍了PJOIN(意为“预测连接”),这是一种组合并扩展了join和LINK操作的原语,它们是Valiant的皮质计算理论的基础。我们证明PJOIN可以在Valiant的神经模型中自然地实现,这是一种保守的皮层计算形式模型。使用PJOIN(几乎没有其他任何东西),我们给出了一个简单的算法,用于对任意二进制模式集合进行无监督学习。该算法主要依赖于预测,在分析刺激时需要大量的下行流量(“反馈”)。预测和反馈是众所周知的神经认知特征,据我们所知,这是第一次从理论上预测它们在学习中的重要作用。
课程简介: What is the mechanism of learning in the brain? Despite breathtaking advances in neuroscience, we do not seem close to an answer. We introduce PJOIN (for “predictive join”), a primitive that com- bines and extends the operations of JOIN and LINK that are the basis of Valiant’s computational theory of cortex. We show that PJOIN can be implemented naturally in Valiant’s neuroidal model, a conservative formal model of cortical computation. Using PJOIN — and almost nothing else — we give a simple algorithm for unsupervised learning of arbitrary ensembles of binary patterns. This algorithm relies crucially on prediction, and entails significant downward traffic (“feedback”) while parsing stimuli. Prediction and feedback are well-known features of neural cognition and, as far as we know, this is the first theoretical prediction of their essential role in learning.
关 键 词: 学习机制:神经科学; 预测连接
课程来源: 视频讲座网
数据采集: 2025-04-07:zsp
最后编审: 2025-04-07:zsp
阅读次数: 9