首页数学
0


随机图上社区检测的计算下界

Computational Lower Bounds for Community Detection on Random Graphs
课程网址: https://videolectures.net/videos/colt2015_hajek_random_graphs  
主讲教师: Bruce Hajek
开课单位: 信息不详。欢迎您在右侧留言补充。
开课时间: 2015-08-20
课程语种: 英语
中文简介:
本文研究了在一个大的Erd \H{o} s- r随机图$\calG(N,q)$中是否存在一个小的密集群落的检测问题,其中群落内的边缘概率超过$q$一个常数因子。假设植团检测问题的硬度,我们发现群落检测的计算复杂度呈现如下相变现象:随着图大小$N$的增长,图根据$q=N^{-\alpha}$变得更稀疏,存在一个临界值$\alpha = \frac{2}{3}$,在这个临界值以下存在一个计算密集型的过程,它可以检测到比任何计算效率高的过程都要小得多的社区,在这个临界值以上,线性时间过程在统计上是最优的。结果还导致平均情况下的硬度结果,以恢复密集的群落和近似最密集的$K$ -子图。
课程简介: This paper studies the problem of detecting the presence of a small dense community planted in a large Erd\H{o}s-R\'enyi random graph $\calG(N,q)$, where the edge probability within the community exceeds $q$ by a constant factor. Assuming the hardness of the planted clique detection problem, we show that the computational complexity of detecting the community exhibits the following phase transition phenomenon: As the graph size $N$ grows and the graph becomes sparser according to $q=N^{-\alpha}$,there exists a critical value of $\alpha = \frac{2}{3}$, below which there exists a computationally intensive procedure that can detect far smaller communities than any computationally efficient procedure, and above which a linear-time procedure is statistically optimal. The results also lead to the average-case hardness results for recovering the dense community and approximating the densest $K$-subgraph.
关 键 词: 密集群落:检测问题; 复杂度
课程来源: 视频讲座网
数据采集: 2025-04-07:zsp
最后编审: 2025-04-07:zsp
阅读次数: 7