首页数学
0


一种高效的基于图的主动学习算法及其在非参数分类中的应用

An Efficient Graph Based Active Learning Algorithm with Application to Nonparametric Classification
课程网址: https://videolectures.net/videos/colt2015_dasarathy_nonparametric...  
主讲教师: Gautam Dasarathy
开课单位: 信息不详。欢迎您在右侧留言补充。
开课时间: 2015-08-20
课程语种: 英语
中文简介:
研究了图上二值标记预测的主动学习问题。我们为这个任务引入了一个简单且标签高效的算法,称为$S^2$。在每一步中,$S^2$根据图的结构和之前收集的所有标签选择要标记的顶点。具体来说,$S^2$查询平分任何一对相反标记的顶点之间的{\em最短路径}的顶点的标记。我们根据图上二元函数复杂度的一种新的参数化,提出了查询$S^2$所需的查询数的理论估计。我们还给出了实验结果,证明了$S^2$在真实数据和合成数据上的性能。虽然其他基于图的主动学习算法在实践中已经显示出前景,但我们的算法是第一个具有良好性能和理论保证的算法。最后,我们论证了$S^2$算法在非参数主动学习理论中的意义。特别地,我们证明了$S^2$对于一类重要的非参数分类问题达到了接近极小极大最优超额风险。
课程简介: This paper investigates the problem of active learning for binary label prediction on a graph. We introduce a simple and label-efficient algorithm called $S^2$ for this task. At each step, $S^2$ selects the vertex to be labeled based on the structure of the graph and all previously gathered labels. Specifically, $S^2$ queries for the label of the vertex that bisects the {\em shortest shortest} path between any pair of oppositely labeled vertices. We present a theoretical estimate of the number of queries $S^2$ needs in terms of a novel parametrization of the complexity of binary functions on graphs. We also present experimental results demonstrating the performance of $S^2$ on both real and synthetic data. While other graph-based active learning algorithms have shown promise in practice, our algorithm is the first with both good performance and theoretical guarantees. Finally, we demonstrate the implications of the $S^2$ algorithm to the theory of nonparametric active learning. In particular, we show that $S^2$ achieves near minimax optimal excess risk for an important class of nonparametric classification problems.
关 键 词: 最短路径; 主动学习理论:非参数分类
课程来源: 视频讲座网
数据采集: 2025-04-20:zsp
最后编审: 2025-04-20:zsp
阅读次数: 4