图上的Lipschitz学习算法Algorithms for Lipschitz Learning on Graphs |
|
课程网址: | https://videolectures.net/videos/colt2015_sachdeva_lipschitz_lear... |
主讲教师: | Sushant Sachdeva |
开课单位: | 信息不详。欢迎您在右侧留言补充。 |
开课时间: | 2015-08-20 |
课程语种: | 英语 |
中文简介: | 我们开发了快速算法来解决图上的回归问题,其中一个给定函数在某些顶点的值,并且必须找到它到所有顶点的最平滑的可能扩展。我们计算的扩展是绝对最小的Lipschitz扩展,并且是p$-拉普拉斯正则化的大p$的极限。我们提出了在期望线性时间内计算最小Lipschitz扩展的算法,以及在期望时间内计算绝对最小Lipschitz扩展的算法$O (m n)$。后一种算法的变体在实践中似乎运行得快得多。这些扩展特别适合正则化:我们可以执行$ 1_{0}$正则化对给定值在多项式时间和$ 1_{1}$正则化在时间上的图边权$\ widdetilde {O} (m^{3/2})$。我们的算法自然扩展到有向图。 |
课程简介: | We develop fast algorithms for solving regression problems on graphs where one is given the value of a function at some vertices, and must find its smoothest possible extension to all vertices. The extension we compute is the absolutely minimal Lipschitz extension, and is the limit for large $p$ of $p$-Laplacian regularization. We present an algorithm that computes a minimal Lipschitz extension in expected linear time, and an algorithm that computes an absolutely minimal Lipschitz extension in expected time $O (m n)$. The latter algorithm has variants that seem to run much faster in practice. These extensions are particulary amenable to regularization: we can perform $l_{0}$ regularization on the given values in polynomial time and $l_{1}$ regularization on the graph edge weights in time $\widetilde{O} (m^{3/2})$. Our algorithms naturally extend to directed graphs. |
关 键 词: | 回归问题:期望时间:正则化 |
课程来源: | 视频讲座网 |
数据采集: | 2025-04-20:zsp |
最后编审: | 2025-04-20:zsp |
阅读次数: | 5 |