在线非参数回归的链式算法A Chaining Algorithm for Online Nonparametric Regression |
|
课程网址: | https://videolectures.net/videos/colt2015_gerchinovitz_nonparamet... |
主讲教师: | Sébastien Gerchinovitz |
开课单位: | 信息不详。欢迎您在右侧留言补充。 |
开课时间: | 2015-08-20 |
课程语种: | 英语 |
中文简介: | 研究具有任意确定性序列的在线非参数回归问题。利用链接技术的思想,我们设计了一种算法,该算法实现了与Rakhlin和Sridharan(2014)以非建设性方式获得的相似的dudley型遗憾绑定。我们的遗憾界是用sup范数中的度量熵来表示的,当度量熵和顺序熵具有相同的数量级时,它产生最优保证。特别是,我们的算法是第一个实现Hölder球在线回归的最佳速率的算法。此外,我们将在本示例中展示如何调整我们的链算法,以获得具有类似遗憾保证的合理计算效率(最高可达一个对数因子)。 |
课程简介: | We consider the problem of online nonparametric regression with arbitrary deterministic sequences. Using ideas from the chaining technique, we design an algorithm that achieves a Dudley-type regret bound similar to the one obtained in a non-constructive fashion by Rakhlin and Sridharan (2014). Our regret bound is expressed in terms of the metric entropy in the sup norm, which yields optimal guarantees when the metric and sequential entropies are of the same order of magnitude. In particular our algorithm is the first one that achieves optimal rates for online regression over Hölder balls. In addition we show for this example how to adapt our chaining algorithm to get a reasonable computational efficiency with similar regret guarantees (up to a log factor). |
关 键 词: | 非参数回归问题; 链接技术思想; 度量熵 |
课程来源: | 视频讲座网 |
数据采集: | 2025-04-21:zsp |
最后编审: | 2025-04-21:zsp |
阅读次数: | 4 |